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Abstract— We present a fully-integrated sensing and control
system which enables mobile manipulator robots to execute
building tasks with millimeter-scale accuracy on building con-
struction sites. The approach leverages multi-modal sensing
capabilities for state estimation, tight integration with digi-
tal building models, and integrated trajectory planning and
whole-body motion control. A novel method for high-accuracy
localization updates relative to the known building structure
is proposed. The approach is implemented on a real platform
and tested under realistic construction conditions. We show
that the system can achieve sub-cm end-effector positioning
accuracy during fully autonomous operation using solely on-
board sensing.

I. INTRODUCTION

The available workforce in the construction industry is
decreasing, and safety regulations are rising, causing a strong
demand for innovative solutions on construction sites, e.g.,
digitization of the construction process and utilization of
robots. However, robotic fabrication is traditionally associ-
ated with automated assembly lines, where fixed positioning
and constant conditions determine the role that the robot may
undertake in the fabrication process. Unlike such stationary
robotic facilities, construction sites are spatially complex and
cluttered environments. A construction robot must localize
in its environment reliably, while being able to work with
conditions deviating from as-planned building information.
While humans use established tools to achieve required mm
accuracy in construction tasks, mobile robots usually achieve
only cm relative accuracy using on-board sensing [1]. This
is not sufficient for many construction tasks such as drilling
of holes, and installation of fixtures. Moreover, as every
building project is unique, a key challenge is to find strategies

∗Autonomous Systems Lab, ETH Zurich
†Robotic Systems Lab, ETH Zurich
‡Vision for Robotics Lab, ETH Zurich
§Gramazio-Kohler Research, ETH Zurich
Luca Bartolomei, Margarita Chli contributed to the motion planning

{lbartolomei, mchli}@ethz.ch.
Hermann Blum, Abel Gawel, Roland Siegwart contributed to the

state estimation and high accuracy localization {blumh, gawela,
rsiegwart}@ethz.ch.

Timothy Sandy contributed to the state estimator, and motion control
tsandy@ethz.ch.

Koen Krämer, Johannes Pankert, Farbod Farshidian, Marco Hut-
ter contributed to the Motion planning and control {kokraeme,
pankertj, farshidian, mahutter}@ethz.ch.

Selen Ercan, Fabio Gramazio contributed to the building task interface
{ercan, gramazio}@arch.ethz.ch.

This work was partially supported by the Swiss National Science Foun-
dation (SNF), within the National Centre of Competence in Research on
Digital Fabrication and by the HILTI group.

Fig. 1: The proposed system enables high-accuracy interaction of
a mobile robot with the environment using only on-board sensing.
Here, three task locations are highlighted between which a robot
traversed in our experiments yielding sub-cm errors.

to cope with the inaccuracies of the building materials and
components [1]. Robot world representations are usually ref-
erenced to one globally consistent map, or a number of sub-
maps. Yet, the execution of building tasks primarily depends
on the as-built status of existing installations, i.e., a set of
local references and dependencies. Finally, motion planning
and execution on construction sites is also a challenging
problem. The typical kinematic redundancy of a mobile
manipulator needs to be leveraged appropriately in order
to coordinate locomotion and manipulation, while taking
into account the physical constraints of the environment and
uncertainties in the sensing [2].

While existing solutions rely on external sensing systems,
or augmentation of the environment with specific markers to
achieve the accuracy required in construction tasks, this work
presents an autonomous mobile robotic solution for highly
accurate building task execution, solely using on-board sens-
ing. The system is based on the comprehensive integration
of software solutions on a mobile platform to perform the
workflow from extracting tasks from building plans to task
execution. It automatically derives construction tasks from a
3D building model, enables the robot to localize within the
model using LiDAR sensors, uses local references for highly-
accurate localization, plans trajectories, dynamically avoids
obstacles, and implements a whole-body motion planning
regime distributing the movement between the mobile base
and robotic manipulator. We evaluate the robot’s performance
towards discrete building tasks, e.g. drilling, under realistic
conditions. This work presents the following contributions:

• A novel optimization-based method for high-accuracy



robot localization using a set of plane intersections
between laser distance sensor measurements and a 3D
building model.

• LiDAR-based localization within a 3D building model
using 3D scan matching.

• Whole-body model-predictive planning and control for
end-effector pose tracking of a wheeled mobile manip-
ulator.

• Experimental validation of the proposed system on a
prototype robot in a realistic construction-like environ-
ment.

The remainder of this paper is organized as follows. In
Section II, we review the related work on construction
robotics, and related sensing solutions. Section III introduces
the sensing and control system developed within this paper
followed by an experimental evaluation of the system perfor-
mance in Section IV, and concluding remarks in Section V.

II. RELATED WORK

Construction robotics and digital fabrication are emerging
topics in the robotics research community [1]. Existing
solutions towards construction automation range from fixed
automation solutions [3] over innovative systems, e.g. using
flying robots [4], to multi-purpose mobile ground robotic sys-
tems [4], [5], [6]. The proposed system is within the last cate-
gory. Multi-purpose ground-robotic solutions are converging
on typical design aspects, consisting of robotic mobile bases,
manipulators, task-specific end-effectors, and sensing suite
capabilities [5], [7], [8], [9], [6], [10]. Localizing such
robots within the construction environment can be a difficult
task, as perceptual conditions are challenging for cameras,
and environments cannot easily be augmented with external
localization markers or beacons, as used in [8], [7]. To enable
automatic task generation from digital building models and
enable robots to autonomously travel between them, it is
further required to not only identify the working location, but
also localize within the building model of the environment.
[11] match corner-, and door plate-detection with cameras
against 2D maps extracted from 2D floor plans. [12], [13]
localize within floor plans abstracted to 2D grid maps using
G-ICP. They further robustify their localization routine using
a pose-graph SLAM system that enables the robot to account
for largely cluttered environments as compared to the clean
floor plan map. A solution using an initial reference scan
of the environment using 3D LiDAR scans is presented
in [10]. Similarily, [14] and [15] use scan matching and
MCL in 2D using 2D LiDAR sensors. However, no domain
shift in localization between environment model and LiDAR
scans is performed, as the work location is inserted into the
environment represented by the reference scan. Hence, the
accuracy is limited by the reference scanner characteristics.
This paper, however, presents a solution facilitating 3D
building models for localization of 3D LiDAR scans. The
routine performs ICP between LiDAR scans and the point-
cloud sampled from a 3D CAD triangular mesh model.

Another key challenge for construction robots is high-
accuracy end-effector positioning [1]. This requires highly-

accurate knowledge about the end-effector position, e.g., via
on-board sensing [8], [7], [6], [10] or external positioning
systems [4], [9]. Additionally, the positioning of the end-
effector and task execution require either stiff structure [6]
or high control frequency [9]. Using 2D LiDAR sensors, it
is possible to perform both the localization in the previously
recorded model and high-accuracy localization using the
same scan-matching routine [10], [14], [15]. Yet, high-
accuracy on-board localization can also be realized with local
visual markers and their detection using cameras [8], [7],
reaching accuracies well below 1 cm. [14] and [15] report
localization accuracy using scan matching and MCL below
1 cm in 2D using 2D LiDAR sensors in static environments,
with an accuracy only mildly suffering under changed sce-
narios. [6] use 3D LiDAR scans to precisely localize in 3D
against the known model of a work-piece (in contrast to
localizing within the environment), given a localization prior,
achieving an average accuracy of ±5mm.

In this work, we extend this concept facilitating the prior
from 3D LiDAR localization, and inexpensive laser distance
measurement sensors to perform local localization at mm
scale via measurement intersections with the known building
model.

Many of the previous works have considered executing
construction tasks with mobile manipulators. Such robots
must locate tools mounted on the manipulator’s end-effector
with high accuracy. In order to do so, robot motions are
typically decomposed into two sequential steps of first repo-
sitioning the robot’s base, then moving the arm to bring the
tool to the desired location [10], [6], [9], [7]. To the best of
our knowledge, this is the first work that adaptively plans and
tracks whole-body motions for the high-accuracy building
task execution. In doing so, our system can smoothly position
its tool from optimal body postures.

III. SENSING AND CONTROL SYSTEM

In this section, we present the sensing and control system
for high-accuracy mobile manipulation. The system covers
the full range of functionalities to enable a mobile robot to
receive tasks from a building model, autonomously localize
within it, reach indicated task locations, and position an end-
effector tool with mm-accuracy. The system solely relies on
on-board sensing and requires no human intervention, how-
ever allows human intervention if necessary. Key software
components are illustrated in Fig. 2.

A central role is given to the high-level manager that
allocates tasks received from a building task interface to
various software components. We consider building tasks
which require the high-accuracy positioning of an end-
effector-mounted tool at discrete locations in place, such
as drilling, anchoring, and pick-and-place tasks. Expanding
the system to support tasks which require either control
of the tool’s interaction force with the environment (e.g.,
chiseling) or the high-accuracy tracking of the tool along a
continuous trajectory (e.g., plastering) is planned for future
work. The mode of the system is switched depending on the
distance from the current to the desired tool pose. The state



is estimated via a moving horizon estimator (MHE), fusing
LiDAR localization updates, IMU measurements, and wheel
odometry [16]. The estimated state is used in feedback by
a whole-body motion controller which tracks base and end-
effector reference trajectories. These references are generated
by a Model Predictive Controller (MPC) strategy running
at ∼100 Hz. When the tool is far from the target pose, a
stochastic navigation planner is used to find a collision-free
trajectory to bring the robot near the target location. This
base trajectory is used to seed the MPC. Once sufficiently
close, the MPC iteratively plans and tracks a whole-body
trajectory to complete the task. Finally, to reach highest
accuracy, an additional localization routine is performed near
task locations using the localization of the state estimator as
an initial guess, refined with an independent sensor set.

A. State Estimation

State estimation of the robot’s base-pose xtn at time
tn is performed using the ConFusion [16] moving horizon
estimator, minimizing an error over the various inputs in the
least-square sense. Individual errors ej are calculated using
measurements zj connecting to one or more states xti−j

, and
static parameters s, such as calibrations within the function
h, i.e.,

ej = h(xti−j :ti , s, zj) (1)

We thus optimize for the states xto:tn , and static parameters
s, forming an optimization problem over n state instances,
i.e.,

{xto:tn , s} = argmin
xto:tn ,s

n∑
i=0

∑
zj∈Zti−j :ti

‖ej‖2 (2)

Different sensor modalities contribute error terms to the opti-
mizer. Our system implements two types of state constraints,
i.e., pose constraints (j = 0), and relative pose constraints
(j = 1).

1) 3D LiDAR Localization: We facilitate 3D LiDAR to
localize the robot within the building model of the environ-
ment. The map M is represented by a sampled point-cloud
from the 3D CAD traingle mesh model M . Motion compen-
sated 3D LiDAR scans are continuously matched against the
model using ICP. ICP performs a separate minimization, of
the error between new LiDAR points pk ∈ Ltn , and matched
map points qk ∈ M with associated surface normals nk,
facilitating a point-to-plane error metric, i.e.,

x̂ICP
tn = argmin

ŷtn

K∑
k=0

‖(pk − qk)nk‖ (3)

The resulting robot base pose updates x̂ICP
tn ⊆ xtn , are then

sent to the state estimator, assuming that the pose updates are
corrupted by a constant normally-distributed measurement
noise. While we focus on localization within the building
model in this work, the localization module is also able to
build a map by incrementally fusing consecutively matched
scans, and initialized at the starting location of the robot. An
approximate initial guess within the environment is given by

the known starting location. A global localization scheme is
outside the scope of this paper.

2) Wheel Odometry: Rotary encoders mounted on a
robot’s wheels are used to measure the angular velocity of
the wheels. Considering a simple differential drive kinematic
model, these measurements provide a process constraint
on the evolution of the estimated base pose. The modeled
confidence in this constraint is much lower when the wheels
are turning than when they are stationary, since the simple
kinematic model does not capture wheel slippage and non-
flat ground profiles. This constraint therefore mostly helps
enforce that the base remains stationary when the wheels
are not turning.

3) IMU: Angular velocity and linear acceleration mea-
surements from an inertial measurement unit (IMU) provide
an additional process constraint on the evolution of the base
pose. The linear velocity, gyroscope bias, and accelerometer
biases are also estimated online as is typically done for
inertial sensor fusion. The full model and conventions used
are described in a previous work [17]. Because of their high
rate and low latency, the IMU measurements are additionally
used to compensate for the latency of the LiDAR pose
updates. When estimates are received by the robot controller,
they are forward propagated through the more recent IMU
measurements up to the current controller time. Since the
underlying MHE problem is solved using non-linear opti-
mization, as opposed to more commonly used filter-based
methods, fusion of the multiple process measurements does
not require augmenting the state with additional terms, as
in [18].

B. High Accuracy Localization (HAL)

Both, the measuring accuracy of the 3D LiDAR and
discrepancies between the building model and the as-built
conditions of the environment, limit the accuracy of the state
estimate. For building task execution, the system therefore
implements a HAL strategy against the task-relevant refer-
ences, i.e., walls around the task space. Initialized with the
state estimator’s current pose, we localize the static robot
base directly in the building model, represented as a 3D
triangular mesh, using high accuracy laser distance sensors
mounted at the end-effector.
This is done by optimizing the error between expected and
measured distances of the laser sensors for several end-
effector poses y(i)

tn (6 in our experiment, for ease of notation,
the index (i) will be omitted in the following). At each
iteration, we find the planes against which the laser distance
sensors are measuring using ray-tracing in the building model
from the current estimate of the sensor poses at the end-
effector. Given the plane support tp and the plane normal
rp of the intersected triangle in the mesh, we perform an
optimization over the locally differentiable error function
eHAL
tn (ytn):

eHAL
tn (ytn) =

∑
i

c

(∥∥∥∥∥zi −
(
tp(ytn)− y

t
tn

)
rp(ytn)

yR
tnrp(ytn)

∥∥∥∥∥
)
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Fig. 2: Software system overview of the mobile construction robot: The building task interface provides task locations within the building
model of the environment to the high-level robot manager. The high-level manager requests the current robot state fused from ICP-based
localization within the building model, IMU measurements, and wheel odometry. Depending on the robot state, the manager switches
between planning robot base trajectories to the task location, and a HAL procedure depending on the distance to the target. Once the
robot is close to the target, a HAL procedure using laser distance sensors is triggered. The commands are executed using a whole body
motion controller.

yHAL
tn = argmin

ytn

eHAL
tn (ytn)

with yt
tn , and yR

tn the translational, and rotational com-
ponents of ytn respectively. To account for problematic
measurements against clutter or windows and errors in plane
retrieval due to initial pose uncertainty, we use a Cauchy
robust cost function c. The relative transformations between
the end-effector poses are assumed to be known by the
manipulator’s joint encoder readings. The procedure is for-
malized in Algorithm 1.

During the development of the system, we found that
the estimate of the orientation with this routine was not as
reliable and accurate as the initial estimate from aligning
the much richer LiDAR scan with the building model. We
therefore keep the orientation component fixed to the initial
estimate and only optimize over the position. Doing so
further increases the precision of the corrected position.

These local pose corrections yHAL
tn are only used for

the local task execution, and not part of the general state
estimation framework.

C. Building Task Interface

The building task interface bridges the gap between the
design and planning environment containing the complex
building information, and the robotic system. On one side,
this serves as a suitable interface for users of the robotic
system facilitating a building process that allows simple task-
level commanding. On the other side, it seamlessly integrates
the workflow between building construction and the robotic
system for executing building tasks.

A 3D building model is built within the open-source,
Python-based computational framework COMPAS1 and im-
plemented in Rhino Grasshopper to simulate robot state and
task status in relation to the building model. The kinematic
model of the robot is visualized using the compas_fab

1 https://compas-dev.github.io/

Algorithm 1: Proposed algorithm for HAL

1 function localize (ytn ,S,m,M);
Input : Initial guess for pose of end-effector ytn ,

extrinsic calibration of sensors S, iterations
m, and 3D triangle mesh model M

Output: corrected pose of end-effector yHAL
tn

2 eHAL
tn (ytn) = 0

3 y
(i)
tn ← ytn

4 for i = 1 : n do
5 y

(i)
tn ← moveSensorHead(y(i)

tn );
6 for j = 1 : num_sensors do
7 y

(j)
tn ← retrievePose(y(i)

tn ,S)
8 zj ←measureDistance()
9 tp, rp ← raytrace(y(j)

tn ,M )

10 ej ← c

∥∥∥∥zj −
(
tp(y

(j)
tn

)−y(j),t
tn

)
rp(y

(j)
tn

)

y
(j),R
tn

rp(pj)

∥∥∥∥
11 eHAL

tn (ytn) += ej
12 end
13 end
14 yHAL

tn ← argminytn
eHAL
tn (ytn)

15 return yHAL
tn ;

package of the COMPAS framework. Communication be-
tween high-level manager and building environment is estab-
lished using robotic middle-ware roslibpy2. This interface
between building task and high-level manager enables au-
tomatic task generation, monitoring, and user intervention.
Building tasks defined within the building model are thus
converted to end-effector poses represented in the reference
frame of the robot and sent to the high-level manager.

While the current system uses feed-forward task gener-
ation from the building model, the system is designed to
receive updates from the high level-manager for the as-
built status of the construction environment to update the
building model and robot tasks. Furthermore, planned for
future work, it will enable leveraging task-specific references,

2 https://roslibpy.readthedocs.io
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such as relative distances to selected building components,
and relative tolerances between consecutive building tasks.

D. Motion Planning

The motion planning module generates robot state refer-
ence trajectories to bring the end-effector to the target pose
commanded by the building task interface. A typical task
consists of: globally navigating the wheeled base through
the workspace to reach the task execution area, jointly
controlling base and arm motion to get the end-effector near
the commanded pose, executing the HAL routine based on
the laser distance sensors on the end-effector, then finally
fine adjusting the end-effector to the commanded pose.

The planning module is made up of three components
in order to address these subtasks. When the robot is far
away from its target, a stochastic path planner computes
planar base trajectories for navigation through the workspace
towards the target. The planner takes into account both prior-
knowledge of the building structure as well as LiDAR data,
which enables re-planning for dynamic obstacle avoidance.
An MPC module is responsible for generating whole-body
motion references. As an input it takes either the base motion
plan from the navigation planner, or, when the robot is
close enough to its target, a desired end-effector pose. In
both cases a continuous optimal whole-body motion plan,
comprised of both base and arm motion, is computed to track
the desired references. In order to accurately bring the end-
effector to the desired poses required for the HAL routine
and execution of the building task, the base is assumed to
be stationary and a pose interpolation approach is used,
combined with an iterative inverse kinematics algorithm,
in order to compute desired joint positions. These three
components of the planning module are described in more
detail below.

1) Base Navigation Planning: The objective of the base
navigation planner is to drive the robot close to the area
where the tasks need to be executed. Collision-free trajec-
tories are computed in the workspace by running the RRT*
algorithm [19], while checking for collisions by means of
Octomap [20]. The planner adopts an optimistic behavior
by assuming the unknown space to be free. The initial
occupancy map of the environment is generated using the
point-cloud sampled from the 3D CAD triangle mesh model
of the robot’s environment and directly used for planning.
The initial map is then updated incrementally using the
LiDAR scans acquired during navigation, in order to identify
obstacles which are not captured by the building model
or to clear free areas which were previously considered as
occupied. In case the building model is not accessible, the
occupancy map is built incrementally from scratch during
the navigation. Collision checks are performed along the
planned trajectory every time the occupancy map is updated
considering a rectangular bounding box around the robot.
This allows for fast reactions to obstacles that appear and
may block the path during navigation. Every time a potential
collision is identified along the current planned path, the

planner is triggered and a new trajectory that considers the
updated map of the environment is computed.

2) Whole-Body MPC: The MPC module, implemented
with the OCS2 framework [21], uses a kinematic plant
model of the robot. The robot state consists of the base
position and orientation in the horizontal plane and the arm
joint angles x = (xb, yb, θb, q0, . . . , q5)

T . The module’s
outputs are the base linear velocity, the steering rate in
the horizontal plane and the arm joint angular velocities
u = (vb, θ̇b, q̇0, . . . , q̇5)

T . The output is forwarded to the
inverse dynamics tracking controller.

Two different types of references are used. To track the
base motion plan, the references xj are the base position
and orientation and default joint angles for the arm. For
generating whole body motion trajectories the desired end-
effector pose xee is used as a reference. The controller tracks
both references with different cost functions. A unified cost
function is set up as the sum over both individual costs to
track both references with a single MPC strategy:

J(x, x̃,u) =

∫ t0+T

t0

(1− α)Cj + αCee + u
TRu dτ

+ αΦee (4)

Cj =(x− x̃j)
TQj(x− x̃j) (5)

Cee =(ξ(x)� x̃ee)
TQee(ξ(x)� x̃ee)

+ (x− x̃d)
TQd(x− x̃d) (6)

Φee =(ξ(x(T ))� x̃ee(T ))
TQee,Φ(ξ(x(T ))� x̃ee(T ))

(7)

The parameter α ∈ {0, 1} determines which cost is active
and negotiates a smooth transition between the two operating
modes. The cost Cj penalizes deviations of the current robot
state x(t) to the base motion plan x̃j with Qj = 1. Cee

penalizes end-effector tracking errors with Qee = 1 and an
additional weaker cost encourages maintaining a default arm
configuration with Qd = 0.01 diag(0, 0, 0, 3, 10, 10, 0, 5, 0).
The small weight on the default configuration helps to avoid
self-collisions and collisions of the base with the wall. R =
1 puts costs on the control inputs u. An additional terminal
cost Φee with Qee,T = 10 1 penalizes deviations from the
desired end-effector pose at the end of the MPC horizon. The
transformation function ξ from the robot state x(t) to the
end-effector pose is autogenerated by the RobCoGen library
[22]. The code is templated over the scalar type such that
the automatic differentiation toolbox CppAd [23], used in
OCS2, can generate derivatives of the cost function to solve
the MPC problem [24]. With the distance measure �, we
subtract the positions of the two poses and use a quaternion
distance measure for the orientations [25]. The MPC is
solved over a time horizon of T = 1 s. If the desired
target cannot be reached within the current time horizon, the
references are interpolated and for each roll-out a reference
is chosen such that it can be reached in the given time,
assuming some nominal speed.



3) End-effector Pose Interpolation and Inverse Kinemat-
ics: For the situations in which the base is stationary,
smooth motion reference paths between desired end-effector
poses are obtained using pose interpolation. This is done by
defining a smooth interpolation profile with zero velocity
and acceleration at the start and end, and applying that
to linearly interpolate between position vectors and using
spherical linear interpolation for the orientation quaternions.
To compute the arm joint positions for the desired end-
effector poses, we use an iterative inverse kinematics scheme
as described in [26].

E. Whole-Body Motion Control

The motion references generated by the components of the
planning module (described in Sec. III-D) are tracked by a
motion controller. Two separate motion controllers are used
for tracking the whole-body MPC motion references and for
precisely tracking end-effector pose references when the base
is stationary.

During navigation and whole-body end-effector motion
tracking, the motion references come from the MPC in the
form of velocities for the mobile base in the horizontal
plane and the six arm joints. The velocity references for the
wheeled base are translated into feed-forward wheel velocity
references vffwheel using a two-wheeled differential drive
model of the robot. Because the actual base has four wheels
and depends on a skid-steering mechanism which introduces
a significant amount of wheel slip, an additional term viwheel

is added based on the integrated error between the desired
and measured linear and angular base velocities. The fi-
nal wheel velocity references are computed as vrefwheel =

vffwheel+v
i
wheel and are tracked by the base motor controller.

For the arm joints, the reference velocities are numerically
integrated to obtain position references, and numerically
differentiated and low-pass filtered to obtain acceleration
references. These three levels of motion references are then
tracked using torque-control. This allows for compliant and
safe interaction when the arm comes in contact with humans
or its environment. The required joint torques are computed
using a numerical inverse dynamics controller as proposed
in [27]. Computation of the joint-torque references takes into
account the system dynamics, desired joint motions, and
the actuator torque limits. To compensate for unmodeled
dynamics, such as joint friction, we update these torque
references with additional desired torques based directly on
the joint position and velocity errors. These joint torque
references are then tracked by the arm’s internal controller.

When executing the HAL scanning routine and moving
to the final task pose the arm actuators are switched to
position-control mode. In this situation, the joint position
references from the inverse kinematics solver (Sec. III-D.3)
are commanded directly.

IV. EXPERIMENTS

We evaluate the system on a prototype robotic platform
within a realistic construction environment.

Jaco arm

IMU

Mobile base

3D LiDAR

3x laser
distance sensors

Fig. 3: The mobile construction robot research platform Waco used
in this work, equipped with 6 DoF arm, and sensors.

A. Hardware Setup

The robot used for the experiments is depicted in Fig. 3.
The hardware configuration consists of a variety of stock
components, and custom built installations, thus forming a
research platform suitable for the testing of software solu-
tions for highly accurate mobile manipulation. The robotic
platform comprises a mobile base (Inspector Bots Super
Mega Bot3) with mounted Kinova Jaco robot arm4, a custom
3D-printed end-effector, sensor suite for localization, and
computing hardware. The robot is named Waco, derived from
"Wheeled Jaco". As a tool, the end-effector is equipped
with a small spring in series with a marker, in order to
perform non-destructive discrete tool positioning tasks. For
on-board localization, the robotic platform is equipped with
a Velodyne VLP-16 sensor, an Xsens MTi-100 IMU, wheel
encoders, and a sensor-head consisting of three orthogonal
laser distance measurement sensors at the end-effector. The
on-board computing hardware is based on an Intel Core i7-
6700 CPU @ 3.4GHz, and 16GB RAM. A second off-board
computer, communicating over WLAN, runs the building
task interface for the operator.

B. Experimental setup

The system is tested in a realistic construction site envi-
ronment with unfinished concrete walls, and some clutter,
see Fig. 1, and Fig. 4. Using the building task interface, we
specify interaction tasks on three different walls, which are
the locations to be marked by the custom-made tool. The
system accuracy is first tested by repeatedly commanding
different targets in a 3 × 3-dot pattern on each wall, as
illustrated in Fig. 7. The robot then autonomously approaches
the task locations from random locations several meters
away, and places a single dot. This procedure is thereafter
repeated. For later ground-truth evaluation, the commanded
task locations and the final placements of the end-effector
are measured with a Leica Nova TM50 Total Station. Fur-
thermore, we demonstrate the entire system performing fully
autonomous loops between three task locations (one target

3www.inspectorbots.com
4www.kinovarobotics.com

www.inspectorbots.com
www.kinovarobotics.com


A

B

C

Fig. 4: Plan view of the experimental setup: The robot is illustrated
in the three task locations A, B, and C. The red lines indicate the
lateral HAL references, the vertical reference is measured against
the floor.

on each wall), as depicted in Fig. 1 and Fig. 4. Moreover, we
vary the experimental setup by dynamically adding obstacles
in the planned path of the robot, demonstrating adaptive
re-planning of the platform. In the experiments, we use a
building model of the environment with minor deviations
between the as-planned and as-built status. However, notable
deviations between the reality and the building plan persist,
such as smooth surfaces instead of brick walls, unmodeled
HVAC components such as pipes, and small deviations in
walls.

C. Results

The integrated system experiment shows reliable per-
formance throughout 30 individual experiments. The robot
concludes multiple cycles between the three task locations
without human intervention, also adaptively avoiding dy-
namic obstacles 5.

1) Positioning evaluation: The robot performance in the
interaction experiment at the three task locations is reported
in Fig. 5 and Table I. Here, we report the absolute errors in
global coordinates, with respect to the building model origin
used to derive the robot tasks. Furthermore, the relative errors
within the drawing pattern of the robot are depicted. For this,
all pair-wise combinations are evaluated. The plots show the
distribution and total spread of all measurements. Overall, we
observe mean relative errors between 3.3mm and 5.9mm.
The absolute errors for the three task locations are below
1 cm for location A, and between 22mm and 37mm for
locations B and C respectively. The lateral (x) and vertical
components (z) of the errors are split in Fig. 6. Notable
observations are a high lateral offset for locations B and
C, as well as a high vertical offset at task location C, while
both error components are low at location A. A sample 3×3
dot pattern created by the robot at location B is depicted in
Fig. 7.

2) Discussion: This section offers a discussion of the
experimental results. Firstly, it is noteworthy that the system
achieves generally low relative errors facilitating locally

5Please refer to the accompanying video for a full demonstration:
https://youtu.be/Ol82Gh_1T9w.
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Fig. 5: Absolute and relative errors in point position for a nine dot
pattern at the three different task locations.
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Fig. 6: Difference between commanded and executed point position
over the different axes in the nine dot pattern.

repeatable references. This is especially important for lo-
cally accurate construction tasks, e.g., installation of several
screws in a specific pattern to mount a lamp or rail. However,
the absolute error is presently highly dependent on the task
location. While the principal solution of the HAL routine is
theoretically sound, we identified sources of error leading to
increased absolute errors particularly for locations B and C.

In both locations, we note a large lateral absolute error.
This can be best attributed to our current experimental set-
up of taking reference walls with large distance in lateral
direction as localization reference for the HAL routine. Here,
the distances between task locations, and reference walls
are 1.7m, 11.5m, and 4m for locations A-C respectively.
Slight rotational errors in the external calibration of the
laser distance sensors are magnified by these distances.
Furthermore, the floor at location C has an inclination that
is not accurately reflected in the building model, adding

50 mm

5
0

 m
m

Fig. 7: Nine dot task pattern at location B: The robot is commanded
to perform a 50mm-spaced 3 × 3-grid of interactions in three
locations.

https://youtu.be/Ol82Gh_1T9w


TABLE I: Mean positioning errors.

A B C

Mean absolute error [mm] 7.0 32.9 26.1
Mean relative error [mm] 3.3 3.8 5.9

error components to the absolute error both laterally, and
vertically. Also, the laterally referenced walls for B and C
are rough brick walls, instead of the load-bearing concrete
walls in the building plan.

Lastly, we also tested the system with a simplified building
model of the environment having several significant devia-
tions from the as-built conditions, notably in the inclination
of the floor, and the distances between the walls. Testing in
this scenario led to a large increase in errors especially in
relative errors for location C by factors of 2 − 3, as most
measurements were rejected as outliers given the discrep-
ancy from the as-planned building model. While the system
performs well in locations of the building model that reflect
the real conditions, a promising avenue of future research
is handling of discrepancies between as-planned and as-built
status of construction environments as well as handling of
highly cluttered environments containing a large amount of
unmodelled objects.

V. CONCLUSIONS

In this work, we presented a system for high-accuracy
interactions of a mobile robot for construction sites. The
system performs all state estimation using on-board sensing
only. Notable features are a tight integration with the digital
building model for task allocation, and robot localization. It
is implemented on a robotic platform, and is able to reliably
reach high-accuracy interactions under realistic conditions.
Presently, the HAL routine is hand-designed. In future work
it would be interesting to investigate task-adaptive strategies
to yield the most reliable measurements. Furthermore, we
wish to close the feedback loop between the perception and
building task interface, automatically updating the building
model perceived from the as-built conditions.
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