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Abstract— In this work, we present a perception-aware path-
planning pipeline for Unmanned Aerial Vehicles (UAVs) for
navigation in challenging environments. The objective is to
reach a given destination safely and accurately by relying on
monocular camera-based state estimators, such as Keyframe-
based Visual-Inertial Odometry (VIO) systems. Motivated by
the recent advances in semantic segmentation using deep learn-
ing, our path-planning architecture takes into consideration the
semantic classes of parts of the scene that are perceptually
more informative than others. This work proposes a planning
strategy capable of avoiding both texture-less regions and
problematic areas, such as lakes and oceans, that may cause
large drift or failures in the robot’s pose estimation, by using
the semantic information to compute the next best action with
respect to perception quality. We design a hierarchical planner,
composed of an A

∗ path-search step followed by B-Spline
trajectory optimization. While the A

∗ steers the UAV towards
informative areas, the optimizer keeps the most promising
landmarks in the camera’s field of view. We extensively evaluate
our approach in a set of photo-realistic simulations, showing a
remarkable improvement with respect to the state-of-the-art in
active perception.

I. INTRODUCTION

Safe navigation in unknown and dynamic environments

is a fundamental skill for truly autonomous mobile robots.

For successful autonomous navigation, a robot must map the

environment with sufficient accuracy to avoid collisions with

obstacles and at the same time localize itself in this estimated

map. Today, both real-time localization and mapping are

still open problems. While GPS is widely used, there are

numerous situations that it can fail, such as, around high

buildings and mountains, due to bad weather, and jamming.

In these cases, ground robots can just stop, but aerial robots

need a safe method to reach an emergency landing spot or

even better continue to fly towards their destination. Visual-

based navigation is an alternative to GPS, usually using

Visual-Inertial Simultaneous Localization and Mapping (VI-

SLAM) algorithms. In addition, VI-SLAM is also capable

of computing the local map to avoid collision with unknown

or dynamic objects [1]. However, it also has its limitation;

for example, these algorithms do not perform well in texture-

less areas. Recently, the emergence of perception-aware path-

planning algorithms showed it is possible to avoid paths

through texture-less regions, such as [2], [3].

This work proposes an active perception path-planning

method that avoids not only texture-less regions, but also

is capable of avoiding areas with sufficient texture, albeit
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Fig. 1: 3D-view of a planning iteration of the proposed planner
in the Bay experiment. The informative areas are highlighted with
green dots, while the perceptually degraded parts are in red. The
planner is able to avoid the collision between the UAV and the
obstacle, while steering the robot towards the informative areas. The
red line is the trajectory computed by the path-searching algorithm,
while the yellow line is the trajectory after optimization.

unsuitable for robust localization (e.g. due to dynamic objects

and specularities). Our approach aims to leverage recent

advances in real-time semantic segmentation using deep

learning to identify the problematic areas. Today, there is

a plethora of algorithms that are capable of detecting well-

known problematic areas to fly. Lakes and oceans can be

easily detected by algorithms such as [4], as well as roads and

people can be recognized by [5]. In brief, the contributions

of this work are the following:

• the design of a perception-aware navigation architecture

for UAVs in challenging environments,

• the design of a hierarchical path-planning pipeline able

to incorporate information from semantic segmentation

with real-time re-planning capabilities, and

• an extensive quantitative evaluation of the performances

of the proposed system with respect to the state-of-the-

art in active perception in photo-realistic simulations.

II. RELATED WORK

The link between active perception and the problem of

SLAM, providing estimates about the robot’s pose and its

workspace, is strong [6], [7]. Both the motion and the path

followed by a robot have a great impact on the performance

of state estimation algorithms, so the aim in active perception

is to fill the gap between path-planning and state estimation

by considering the robot’s state uncertainty during planning.

This constitutes a fundamental step towards the creation of a



fully autonomous system, able to cope with the uncertainties

present in a real mission.

Active perception has roots in the seminal work of [8],

advocating that sensory performance can be improved by

proper selection of control actions. Other early works de-

scribe the importance of using sensors actively (or active

vision) for problems, such as structure from motion [9]. Since

then, efforts have been made to integrate perception, path-

planning and control in a unified framework. One of the

first successful approaches is the work in [10], attempting to

control two movable cameras on a ground robot to reduce

the uncertainty during localization estimation. Based on their

earlier results for incremental building and maintaining of

maps for a navigating robot, [10] relies on the cross-coupling

between the pose of the robot and the mapped features. In

the same spirit, [11] and [12] provide more recent, successful

examples that integrate path-planning with control and state

estimation. In contrast to [10], these works do not use

sensors actively and instead focus on motion generation for

enhancing the state estimation process.

In general, the problem of active perception can be for-

mulated as Partially Observable Markov Decision Processes

(POMDPs) [13], providing a framework for planning un-

der uncertainty. However, the complexity of solving high-

dimensional POMDP models motivates more efficient solu-

tions. Belief-space planning emerged to allow the integra-

tion of the expected robot belief into its motion planning

efficiently [14] and led to powerful tools, such as belief

roadmaps [15] and belief trees [6], which were used to

approach the problem of exploration and mapping [16]. In

recent years, various approaches based on receding-horizon

planning strategies emerged, combining efficient exploration

of unknown environments with belief-space based planning

in order to enhance the on-the-go mapping behaviour of the

robot [3], [17]. One of the main objectives is to create a

computationally tractable planning framework that can gen-

erate optimized navigation paths online, running alongside

all other essential computation onboard a small robot [18].

Currently, the most relevant competitor to this work is

Zhang and Scaramuzza [3], proposing a perception-aware

receding-horizon approach that generates a collection of

possible trajectories and evaluates them in terms of landmark

concentration, collision probability, and distance to the goal.

In this work, we show that landmark concentration alone is

not enough for selecting the best areas to fly trough, because

unstable landmarks can introduce significant errors in visual-

based localization systems. Instead, we employ semantics

to evaluate the quality of both the candidate areas for

navigation and the landmarks. We propose a path-planning

pipeline building on top of [19] able to incorporate this

additional information in order to encourage the navigation

through informative regions of the space and to favor the

triangulation of high-quality landmarks. Our approach shows

noticeable improvements in state estimation performance

when compared to a purely reactive planning strategy and

the perception-aware planner proposed by [3]. Our pipeline

is described in the next sections.

III. PROBLEM DESCRIPTION

The overall problem considered in this work is to reach a

predefined goal pose while minimizing the drift in a visual-

based pose estimation algorithm. The core assumption of

this work is that there exist areas which are more suit-

able for localization than others, and our objective is to

fly through them as much as possible. We formulate this

as a path-planning problem, where the perception quality

extracted from semantic labels plays a primary role. We

aim to generate smooth and collision-free trajectories in a

receding horizon fashion while considering the constraints of

Keyframe-based Visual-Inertial Odometry (VIO) systems. In

this work, semantic classes (e.g. water and ground) are manu-

ally mapped to a certain level of perceptual informativeness.

To incorporate the perception quality, we employ a path-

searching algorithm to encourage navigation in well-textured

areas, followed by a trajectory optimization step where the

objective is to keep the best 3D landmarks estimated by the

VIO pipeline in the field of view of the camera.

IV. SYSTEM OVERVIEW

As shown in Fig. 2, the proposed pipeline consists of two

main components; a monocular camera-based state estima-

tion module and a path-planning architecture.

The platform is equipped with a front-looking stereo camera

with hardware-synchronized IMU [20]. A dense 3D recon-

struction of the surroundings of the robot is obtained from

the pair of stereo images, while only one camera is used to

estimate the robot’s state. The dense point cloud is stored

as an occupancy map by means of a 3D circular buffer

[21]. We employ the keyframe-based VIO system VINS-

Mono [22] to estimate the 6-Degrees-of-Freedom (DoF) pose

of the camera using the stream of grayscale images and

IMU measurements. This estimate is further fused with the

readings of an additional IMU mounted on the center of the

UAV using the Multi-Sensor Fusion (MSF) framework [23]

in order to get better velocity estimates for control purposes.

In addition to the poses, the VIO module gives the estimated

positions of the 3D landmarks used for localization.

Before being sent to the trajectory generation module, both

the dense 3D occupancy map and the sparse landmarks go

through a classification step, which provides binary labels

for all the points. We consider a point to be of high quality

if it belongs to parts of the scene useful for camera-based

state estimation. This is motivated by the fact that some

parts of the environment, such as water or moving objects,

can produce erroneous state estimates because VIO systems

assume non-specular surfaces and static scenes. Relying on

such features may have disastrous consequences, e.g. increas-

ing drift in the estimation or failures. Given the detection

problem of moving objects, such as cars and people, as well

as ground classification, is not the core of our contribution

here, we used ground-truth semantics in our experiments, but

there are several off-the-shelf algorithms available [4], [5]

that we could use to this end. The labelled occupancy map

and landmarks are used by the path-planning architecture to

reason about the next best action. The path-planning module



IMUUAV

Estimation Module

 Stereo Images
Mapping

Occupancy Map

Classifier
Images, 3D Landmarks

Labelled 3D Landmarks

Labelled Map Kinodynamic 

Path Search 

Goal Pose
Path-Planning Module

TrajectoryB-Splines 

Optimization
Path

Fused PosesImages, IMU
VIO MSF

Poses

Fig. 2: Schematic representation of the pipeline. In the Estimation Module, we process the sensor inputs (images and IMU readings)
to estimate the pose of the UAV and the positions of the 3D landmarks. These landmarks, together with the images and the occupancy
map obtained from the stereo camera, go through a classification step, where each point is evaluated on its utility for camera-based state
estimation. The labelled data and the poses are used the Path-Planning Module to generate the next best trajectory while considering both
the dynamics of the platform and the perception quality.

is based on a hierarchical structure, composed of a path-

search step followed by trajectory optimization. The path-

search planner uses the labelled occupancy map to steer

the robot towards potentially informative areas using the A∗

algorithm. The output path might be sub-optimal, so it is

later refined by a B-Spline-based planner. We formulate an

optimization problem in an attempt to follow the trail of high-

quality landmarks by keeping them in the field of view of the

camera during navigation. In the next section, the proposed

path-planning architecture is explained in details.

V. PATH PLANNING

The first step of the planning pipeline consists of a

kinodynamic A∗ path search [24]. Its output is used as an

initial guess by a second planner, which parametrizes the

trajectory as continuous B-Splines and performs trajectory

optimization. In the following, we indicate with M the

occupancy map of the environment.

A. Kinodynamic Path Search

The proposed path-searching module builds on top of the

kinodynamic A∗ algorithm presented in [19]. Similarly to the

original implementation, we use motion primitives instead of

straight lines as graph edges in order to respect the multi-

copter’s dynamics. As the first step is the iterative expansion

of primitives in M, the trajectories ending in the same

voxels are pruned and only the one with the smallest cost

is maintained. After expansion and pruning, the remaining

primitives are checked for safety and dynamic feasibility.

Finally, in order to improve the chances of reaching the goal,

we adopt the analytic expansion strategy detailed in [19].

The path search is limited to the position of the robot in R
3,

and thanks to the differential flatness of multirotor systems

[25], the trajectory is represented as three, independent, time-

parametrized polynomial functions p(t):

p(t) := [px(t), py(t), pz(t)]
T , pd(t) =

K
∑

k=0

akt
k (1)

with d ∈ {x, y, z}. Notice that the orientation is not consid-

ered, since at this point the objective is to steer the robot

towards informative areas rather than enforcing rotations

towards them. Thus, the orientation θ(t) along the path is

computed as:

θ(t) := arctan
ṗy(t)

ṗx(t)
. (2)

(a) Side view of the occupancy map. The green
voxels belong to MG, while the red ones cor-
respond to low-quality areas. The distances used
in the computation of dM for a voxel v are
highlighted.
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(b) Plot of the cost dz as a function of the height
difference ∆z and the threshold d

∗.

Fig. 3: Representation of the terms necessary for the computation
of dM in the path-search problem.

We consider the multirotor system as lin-

ear and time-invariant, with state s(t) :=
[p(t)T , ṗ(t)T , . . . ,p(n−1)(t)T ]T ∈ χ ⊂ R

3n and control

input u(t) := p(n)(t) ∈ U := [−umax, umax]
3 ⊂ R

3. We

set n = 2, corresponding to a double integrator.

As the aim is to encourage the navigation in well-textured

areas, the cost of a trajectory is defined as

J (T ) =

∫ T

0

(

wu‖u(t)‖
2 + wMdM (p(t),M)

)

dt+ wTT,

(3)

where ‖u(t)‖2 is the control cost; dM (p(t),M) represents

a penalty for navigating far away from informative areas;

and T is the total time of the trajectory. The terms wu, wM

and wT are the constant weights associated to each cost.

While the meaning of the first and last terms is clear, we

now describe the term dM (p(t),M) in more detail.

Given the latest labelled occupancy map M, we treat the

informative voxels as attractors. Notice that the remaining

voxels do not act as repellers, because dM (p(t),M) is a soft



constraint on the position of the robot. This is motivated by

extreme situations, where most or all of the area is texture-

less. In this case, the robot should not interrupt its navigation

towards the goal, even if it has to navigate these poorly

textured regions. In such situations, the path-search algorithm

tries to minimize the control cost and total time required to

reach the goal.

If we define MG ⊆ M as the set of voxels corresponding

to high-quality areas, dM (p(t),M) is computed as

dM (p(t),M) :=
∑

v∈MG⊆M

dv(p(t),v) =

∑

v∈MG⊆M

dxy(p(t),v) + dz(p(t),v),
(4)

where each voxel v ∈ MG has coordinates v =
[vx, vy, vz]

T . The cost dM (p(t),M) is composed of two

potential functions (Fig. 3). While dxy(p(t),v) encourages

navigation on top of texture-full areas, dz(p(t),v) is a soft

constraint on the minimum distance from the ground, as

shown in Fig. 3a. The two costs are calculated as

dxy(p(t),v) := (px(t)− vx)
2 + (py(t)− vy)

2, (5)

and by defining ∆z := |pz(t)− vz|,

dz(p(t),v) := d∗∆z +
1

2

d∗
4

∆z2
−

3

2
d∗

2

, (6)

where d∗ controls the minimum height of the robot with

respect to the voxels in MG. The cost dz is plotted as a

function of ∆z in Fig. 3b.

From these definitions, the cost of a motion primitive with

discrete inputs u(t) = uk and time duration τ is ec =
(wu‖uk‖

2 + wMdM,k + wT )τ . The final cost of the path

to reach a state sc from the start state ss consisting of N

primitives is

gc =

N
∑

i=0

(wu‖uki
‖2 + wMdM,ki

+ wT )τ. (7)

In order to speed up the search in the A∗ algorithm, the

choice of an admissible and consistent heuristic is funda-

mental. We propose to use the heuristic function hc :=
hu,T+hM , where hu,T is obtained by minimizing the relaxed

cost function from sc to the goal state sG

J (T ) =

∫ T

0

wu‖u(t)‖
2dt+ wTT (8)

and hM := dM (pG,M), where pG corresponds to the

position in the goal state sG. Finally, the total cost to reach

the goal state is defined as fc = gc + hc. Regarding the

computation of hu,T , the interested reader can refer to [19].

B. Trajectory Optimization

While the trajectory computed in the path-searching step

encourages navigation towards the informative areas, the

information produced by the VIO module, i.e. the 3D land-

marks, is not utilized. Therefore, a trajectory optimization

step leveraging this additional level of information is nec-

essary. We propose to parametrize the trajectory π(t) as

an uniform B-Spline and formulate an optimization problem

where the aim is to generate smooth and feasible trajectories

encouraging the tracking and triangulation of high-quality

3D landmarks.

1) Uniform B-Splines: A B-Spline π(t) of degree K can

be evaluated as follows:

π(t) =

N
∑

i=0

qiBi,K−1(t), (9)

where qi are the control points at time ti with i ∈
{0, . . . , N}, and Bi,K−1(t) are the basis functions.

In our case, each control point in {q0,q1, . . . ,qN} en-

codes both the position and orientation of the robot, i.e.

qi := [xi, yi, zi, θi]
T ∈ R

4 with θi ∈ [−π, π). We adopt

a uniform representation, meaning the elements of the knot

vector [t0, t1, . . . , tN+1+K ] and tm ∈ R have a fixed knot

span ∆t = tm+1 − tm. For sake of readability, we drop the

explicit dependency on time t in the following.

2) Problem Formulation: The planning problem is formu-

lated as an optimization with the following cost function:

FTOT = λsFs + λfFf + λcFc + λlFl + λvFv, (10)

where Fs is the smoothness cost; Fc is the collision cost; Ff

is a soft limit on the derivatives (velocity and acceleration)

over the trajectory; Fl is the penalty associated to loosing

track of the high-quality landmarks currently in the field of

view; and Fv is a soft constraint on the co-visibility between

control points of the spline. The coefficients λs, λc, λf , λl

and λv are the constant weights associated to each cost.

For a B-Spline of degree K defined by N + 1 con-

trol points {q0,q1, . . . ,qN}, our optimization acts on

{qK ,qK+1, . . . ,qN−K} while keeping the first and last K

control points fixed due to boundary constraints. Thus, we

do not have to add a cost associated to the end point of

the trajectory. Furthermore, in contrast to other recent ap-

proaches, such as [21], in the formulation of the smoothness

and feasibility costs, we explicitly remove the dependency on

time and we perform time re-allocation after optimization;

we notice that this approach does not degrade the quality of

the trajectory.

We formulate the cost functions as elastic bands [26]

by writing fictitious forces Fi,j := qi − qj acting from

the control points qj to qi. From this, we formulate the

smoothness cost as

Fs =

N−K+1
∑

i=K−1

‖Fi+1,i + Fi−1,i‖
2 =

N−K+1
∑

i=K−1

‖(qi+1 − qi) + (qi−1 − qi)‖
2.

(11)

The purpose of Fs is to avoid discontinuities in the position

and in the velocity and acceleration profiles. Similarly, given

the maximum velocity and acceleration vmax and amax, the

feasibility cost Ff penalizes the segments of the trajectory



exceeding these limits. The penalty for a single dimension

velocity vd with d ∈ {x, y, z} is:

Fv(vd) =

{

(v2d − v2max)
2 if v2d ≥ v2max

0 otherwise
. (12)

The cost for the acceleration Fa(ad) is identical. The final

feasibility cost is then given by the contribution of both the

velocity and acceleration limits:

Ff =
∑

d∈{x,y,z}

N−K+1
∑

i=K−1

Fv(vi,d) + Fa(ai,d). (13)

Differently from Fs and Ff , the collision cost acts as

a repulsive force, penalizing the trajectory points that are

within a threshold distance do to the closest obstacles:

Fc =
N−K
∑

i=K

c(qi) (14)

with

c(qi) =

{

(d(qi)− do)
2 if d(qi) ≤ do

0 otherwise
, (15)

where d(qi) is the distance between qi and the closest

obstacle.

Instead, the cost Fl encourages the triangulation of high-

quality landmarks and assigns a high penalty to the control

points with few or none such landmarks in the field of

view. The choice of using the number of tracked landmarks

instead of other information gain formulations, is dictated

by the fact that VIO systems benefit more from good

spatial distributions of landmarks than sparse informative

measurements. The camera frustum is characterized by its

horizontal and vertical angular apertures, indicated as θhor
and θver, respectively. We consider a landmark to be visible

if it lies within the field of view, which is identified by five

half-spaces. Notice that, in order to be able to use standard

tools for numerical optimization, we need to formulate this

visibility condition as a continuous, differentiable indicator

function [27]. The half spaces are represented by the set of

vectors connecting the optical center of the camera to the

vertices of the sensor, as shown in Fig. 4. In the camera

reference frame C, these vectors are

vTR = f ·
[

sin θhor − sin θver 1
]T

vLR = f ·
[

sin θhor sin θver 1
]T

vLL = f ·
[

− sin θhor sin θver 1
]T

vTL = f ·
[

− sin θhor − sin θver 1
]T

vZ = f ·
[

0 0 1
]T

, (16)

where f is the focal length in meters.

In order to check whether a landmark lies within the camera

frustum, it has to be expressed in the camera frame C;

however, the set of available 3D landmarks LW from the

VIO module are expressed in the odometry frame W . If we

indicate the subset of high-quality landmarks as LW
G ⊆ LW ,

Fig. 4: Representation of the field of view of the camera and of
the reference frames. W corresponds to the odometry reference
frame, while B is the body (IMU) and C the reference frame of
the camera.

we can express its elements lW in C as follows:

lC = RCW lW + tCW , (17)

where RCW ∈ SO(3) and tCW ∈ R
3 are the rotation

matrix and the translation vector from W to C, respectively.

For ease of representation, we adopt homogeneous matrices

TAB ∈ SE(3) to indicate transformations from B to A:

TAB =

[

RAB tAB

01×3 1

]

. (18)

To obtain TCW for a given control point q = [x, y, z, θ]T ,

we proceed as follows. As the VIO estimation corresponds

to the pose of the body B (generally the IMU in VIO

systems) in W (i.e. TWB), we need to concatenate the

fixed transformation TCB , which is known beforehand from

calibration:

TCW (q) = TCBT
−1
WB(q). (19)

Since the control points of the B-Spline represent the body

in W , we can obtain the homogeneous transformation TWB

for a control point q as

TWB(q) =









cos θ − sin θ 0 x

sin θ cos θ 0 y

0 0 1 z

0 0 0 1









. (20)

We can now define the following indicator function over

the set of all high-quality landmarks expressed in the camera

frame (i.e. LC
G) and current control point q:

Fl(q) =
∑

lC∈LC

G

5
∏

j=0

oj(q, lC). (21)

where oj are the elements of

o(q, lC) =























1
2

(

1 + tanh((vTR × vLR) · lC)
)

1
2

(

1 + tanh((vTL × vTR) · lC)
)

1
2

(

1 + tanh((vLL × vTL) · lC)
)

1
2

(

1 + tanh((vLR × vLL) · lC)
)

1
2

(

1 + tanh(vZ · lC)
)























. (22)



Fig. 5: Terms for the computation of the co-visibility cost. For two
consecutive control points qi and qi+1, we compute the angular
difference ∆θi between the orientation θi in qi and the direction
vector ni+1,i.

The final cost for the spline optimization corresponds to

Fl = −

N−K
∑

i=K

Fl(qi), (23)

maximizing the number of the tracked high-quality land-

marks.

The last cost function Fv is associated to the co-visibility

between consecutive control points in the B-Spline. The

purpose is to add a soft constraint on the orientations of

the robot, in order to keep them aligned with the direction

of travel. For a two consecutive control points qi and qi+1,

we compute the orientation vector in the xy plane as

ni+1,i =
[

xi+1 − xi yi+1 − yi
]T

∈ R
2. (24)

We do not use the z coordinates, as the orientation is

expressed as a rotation around the Z-axis; therefore, the z

component does not have any effect on the cost. As shown

in Fig. 5, the orientation of ni+1,i is θni = θni (qi,qi+1) =
atan2(ny

i+1,i, n
x
i+1,i), where the superscript indicates the

corresponding component in the vector. For the control point

qi, we can compute the absolute difference in orientation

with respect to the direction vector ni+1,i as ∆θi := |θi−θni |.
The cost for a couple of two consecutive control points is

Fv(qi,qi+1) =

{

(∆θi −∆θ∗)2 if ∆θi ≥ ∆θ∗

0 otherwise
, (25)

where ∆θ∗ is the maximum allowed angular deviation.

Finally, the cost associated to the co-visibility is

Fv =
N−K−1
∑

i=K

Fv(qi,qi+1). (26)

This cost tries to translate both the control points, but for

a given qi, the successive qi+1 is not subject to changes

in orientation, as the gradient of Fv with respect to θi+1 is

zero.

Moreover, notice that the costs Fl and Fv are in competition

with each other since the former encourages to look in the

direction of the well-localized landmarks, while the latter

aligns the robot orientation with the direction of travel.

VI. EXPERIMENTS

A series of challenging experiments in photo-realistic

simulations using the Gazebo and RotorS frameworks [28]

Experiment Dimensions Ours Reactive [3]

Rocks 30m× 50m 1.46 m 2.98 m 4.96 m

Bay 40m× 55m 1.62 m 6.58 m 7.28 m

Long Beach 100m× 190m 6.05 m 16.67 m 9.24 m

TABLE I: Results of the experiments in the three simulations. We
report the average missed distance, i.e. the distance between the
final position of the UAV and the real goal position.

(a) Top-view of the experiment Rocks. Only our planner (green) is able
to consistently fly the UAV on top of the coast and reach the goal.

(b) Top-view of the experiment Bay. Despite the presence of the obstacle,
our planner (green) is able to steer the robot towards more informative
areas. In this experiment, [3] (red) performs worse than the reactive
planner (cyan), causing a complete failure case, since it follows the low-
quality landmarks extracted on the water surface. Moreover, both the
reactive planner and [3] fly the robot over the boundaries of the model.

(c) Top-view of the experiment Long Beach. Our planner (green) is able to
steer away from dangerous areas (e.g. lake), by flying close to texture-full
structures, such as the bridge in the middle of the model.

Fig. 6: Top-views of the experiments in photo-realistic simulations.
The outputs of the proposed planner are depicted in green, while the
paths in cyan and in red correspond to a purely reactive planning
and the perception-aware planner proposed in [3], respectively. The
goal position is depicted as a red blob and the end positions of the
trajectories are indicated with a square.



were conducted to show the effectiveness of the proposed

method. The simulated UAV is an AscTec Firefly with a

front-looking camera mounted with a pitch angle of 30◦.

Differently from the experiments reported in [3], the simula-

tion environments do not present texture-less areas; instead,

some parts of the models were specifically built to create hard

challenges for camera-based state estimators, such as water

with moving waves. We show that our planner is able to steer

the robot away from these problematic areas, enhancing the

performance of the VIO system.

We tested three different models1, shown in Fig. 6. In

each scenario, we commanded the UAV to fly to a predefined

destination 4 times. The input goal is initially expressed in

the reference frame of the simulator and then is transformed

into the local reference frame of the robot. Notice that

the initial positions of the robot can slightly vary between

different runs of the same experiment, due to the initialization

procedure of the VIO and MSF modules.

In order to evaluate the approach, we use the state estima-

tion error as a metric, especially because the UAV did not

crash in any obstacles in any experiment, despite the high

error in localization. This is an advantage of using local infor-

mation (e.g. local occupancy maps) for obstacle avoidance.

For each experiment, we report the missed distance to the

goal, i.e. the distance between the end position of the robot

and the real position of the goal. The results are reported in

Table I. In Fig. 7 we plot the absolute error in position with

respect to travelled distance, where the error is computed as

the absolute difference from the estimated position of the

UAV with respect to the ground truth.

We compare the performance of our method with a purely re-

active navigation approach and the perception-aware planner

proposed by Zhang and Scaramuzza [3]. The reactive planner

is based on our proposed planner without considering the

perception costs, i.e. setting wM in Eq. (3) and the weights

λl and λv in Eq. (10) to zero.

The experiments are visualized in the accompanying video.

The first scene Rocks (Fig. 6a) consists of a rocky coast

cut in between by a medium-size river. The left half of the

model contains just water, which is moving and reflecting

light. As there are no obstacles blocking the path, we

observe that the purely reactive planner computes mostly

straight line trajectories to the goal to the other end of the

scene. However, these fly the robot in areas of low-quality

perception, resulting in large state estimation errors. The

perception-aware planner of [3] is also not able to steer the

robot towards more informative areas (e.g. the coast), since it

uses all the available landmarks extracted from VINS-Mono

and does not filter the high-quality from the low-quality ones.

It even performs worse than the reactive planner, since it

tries to keep track of the landmarks extracted on the water

surface, causing failures in the estimation. On the contrary,

our planner is able to use information on more informative

areas, encouraging the navigation along the coast. This leads

to a noticeable improvement in accuracy with respect to

1https://sketchfab.com/3d-models
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Zhang and
Scaramuzza [3]

(a) Plot of the absolute positional error in the Rocks experiment.

Ours

Reactive

Zhang and
Scaramuzza [3]

(b) Plot of the absolute positional error in the Bay experiment.

Ours

Reactive

Zhang and
Scaramuzza [3]

(c) Plot of the absolute positional error in the Long Beach experiment.

Fig. 7: Absolute error in position of the state estimate with respect
to increasing travelling distance.

the other two planners, at the expense of slightly higher

trajectory lengths, as shown in Fig. 7a.

Similarly, the second scene Bay contains moving water in

the middle, which lies between the starting point and the

destination. A top view is shown in Fig. 6b. Moreover, close

to the initial position of the robot, we place a large obstacle

(lighthouse), which we label as useful for localization pur-

poses (Fig. 1). The aim of this experiment is to show both the

obstacle avoidance capability of the planners and the impact

obstacles have on the perception cost. The lighthouse acts

as an attractor for the perception cost, as it is rich in high-

quality features. On the other hand, it also works as a repeller

from the obstacle avoidance perspective. It is noticeable how

our planner is able to satisfy the perception constraint while

avoiding the lighthouse, by flying to its right along the coast.

The other methods are also able to avoid collisions, but the



obstacle pushes the trajectories towards low-quality parts

of the scene, causing large drift and, consequently, higher

missed distances.

The last experiment Long Beach (Fig. 6c) presents a set

of dangerous areas, such as water and almost texture-less

desert-like parts. In the middle of the model, we place a

bridge of top of water, which can be utilized for localization

during navigation. Despite that our planner does not navigate

the robot on top of it, the drift in the estimation remains

limited because our planning strategy encourages the robot to

face towards the landmarks extracted on the structure of the

bridge. While the path-search step initializes the trajectory

next to this structure, the trajectory optimizer enhances the

triangulation and tracking of the high-quality landmarks. In

this experiment, [3] performs better than the reactive planner,

because it steers the robot towards textured areas, while the

purely reactive strategy flies the robot on top of the desert-

like part of the scene. Thus, [3] improves the localization

accuracy by avoiding texture-less areas, but it shows worse

performance in comparison to our approach.

Overall, our method performs better than purely reactive

planning and the perception-aware planner [3], as in all the

experiments, the missed distance to the goal is significantly

reduced, at the expense of slightly bigger trajectory length.

Moreover, as shown in Fig. 7, the estimation error in position

remains bounded, showing a noticeable increase in perfor-

mance with respect to our competitors.

VII. CONCLUSION

In this paper, we propose a perception-aware path-planning

architecture for goal reaching tasks. Our approach pushes

the boundaries of the state of the art by incorporating the

semantic labels of the 3D landmarks tracked by a VIO system

into the path-planning instead of using only the existence of

landmarks in certain areas as information.

This design allows us to navigate through areas with harder

perceptual conditions. We demonstrate that we can reach

the assigned goals with limited error and drift, showing

noticeable improvements in performance with respect to

purely reactive planning and the latest available solution in

state-of-the-art of active perception.

Future directions include investigating the incorporation

of the uncertainty of labels in semantic segmentation and

feature classifiers when deployed in aerial vehicles. Another

direction is to extend this pipeline to work with emergency

landing spots detection, where the robot should also favourite

to stay at a close distance from them.
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