
Multi-robot Coordination with Agent-Server Architecture for

Autonomous Navigation in Partially Unknown Environments

Luca Bartolomei, Marco Karrer and Margarita Chli

Vision For Robotics Lab, ETH Zürich, Switzerland

Abstract— In this work, we present a system architecture to
enable autonomous navigation of multiple agents across user-
selected global interest points in a partially unknown environ-
ment. The system is composed of a server and a team of agents,
here small aircrafts. Leveraging this architecture, computation-
ally demanding tasks, such as global dense mapping and global
path planning can be outsourced to a potentially powerful
central server, limiting the onboard computation for each agent
to local pose estimation using Visual-Inertial Odometry (VIO)
and local path planning for obstacle avoidance. By assigning
priorities to the agents, we propose a hierarchical multi-robot
global planning pipeline, which avoids collisions amongst the
agents and computes their paths towards the respective goals.
The resulting global paths are communicated to the agents and
serve as reference input to the local planner running onboard
each agent. In contrast to previous works, here we relax the
common assumption of a previously mapped environment and
perfect knowledge about the state, and we show the effectiveness
of the proposed approach in photo-realistic simulations with up
to four agents operating in an industrial environment.

I. INTRODUCTION

The growing popularity of the use of Unmanned Aerial

Vehicles (UAVs) in tasks, such as exploration of unsafe

areas, inspection, and search-and-rescue missions has been

driving research towards their autonomous navigation. As

aerial perception and path planning have become increasingly

robust, small UAVs have been demonstrated to successfully

plan their path and fly autonomously in some scenarios

(e.g. [1]). However, since computational power and payload

become the limiting factors when planning a mission with

small UAVs, crucial choices regarding the sensor suite to

be carried, as well as the type of algorithms that can be

run onboard, need to be made in order to remain within the

constraints of the platforms, such as battery lifetime. As a

result, multi-robot collaboration is often considered, aiming

to coordinate multiple agents to complete the mission within

a limited time or resources budget, for example in search-

and-rescue, investigation of spatio-temporal phenomena and

inspection of hazardous areas [2].

For multi-robot collaboration to be effective, co-localization

of these robots in a common map and coordination of their

motion to avoid collisions are imperative. While multi-robot

path planning has been receiving considerable attention in

the literature with dedicated studies dating back at least

This work was supported by Swiss National Science Foundation (SNSF,
Agreement no. PP00P2183720), NCCR Robotics, Armasuisse and the HILTI
group.
The open-source code is available at https://v4rl.ethz.ch/

research/datasets-code.html. The video showing the experi-
ments is available at https://youtu.be/BlFbiuV-d10

Fig. 1: 3D-view of the proposed system guiding safe and successful
navigation of a team of four UAV-agents (with trajectories shown in
different colors) in a photo-realistic simulation of an industrial site,
despite that the user-defined waypoints for the UAVs correspond
to partially overlapping regions. Via hierarchical planning, the
proposed system is able to safely plan the UAVs’ paths, running
state estimation and local obstacle avoidance onboard each UAV,
and sensor fusion and multi-robot global planning on the server to
collect all UAVs’ experiences in a joint, optimized map.

three decades, there still is a lack of practical approaches

usable in real scenarios as most existing methods rely on

overly optimistic assumptions. For example, in reactive path

planning [3] the pose of the robot is often assumed to be

not subject to uncertainty, while map-based methods such

as [4], [5] rely on known global maps and attempt to

generate optimal paths through local maps. However, in real

missions the map of the environment is most often unknown

a priori and all state estimates are subject to drift. In [4],

the authors tackle this issue by building a globally consistent

map of the environment of interest using bundle adjustment.

Nonetheless, their approach is limited to a single robot and

requires an initial, manually piloted flight to construct the

map used for planning and re-localization.

The impact of having unknown or only partially known maps

and state estimation drift grows noticeably in multi-robot

applications, where the agents should not only steer away

from obstacles, but also need to avoid collisions between

them. The coordination of multiple robots and the assignment

of the flight area in a multi-UAV mission is not trivial,

as with an increasing number of agents the state grows

quickly. A typical approach from the literature is based

on coordination diagrams, which are searched for paths by

minimizing a global performance cost function [6], [7]. In

[8] different priorities are set for the robots, while more

complex approaches [9] explicitly consider the velocity-time

space for coordinating robot motions. Other approaches use

VIO

Commu-
nication

Local Planning
 and Mapping

 Image
Processing

 Point
Cloud

Odometry, KFs

Local
Pose

GPSImages,
 IMU

 Stereo
Images

Odometry,
 KFs, GPS

G
lo

b
a
l
Pa

th

 Stereo
Images

Images,
 IMU

 Point
Cloud

VIO

Commu-
nication

Local Planning
 and Mapping

 Image
Processing

Odometry, KFs

Local
Pose

GPS

AGENT 2, ..., n

AGENT 1

SERVER

 Pose-graph
 Back-end

Voxblox

 Multi-robot
Global Planner

Global Map

Optimized
 Poses

Fig. 2: The proposed architecture, composed of a set of agents
{1, · · · , n} and a server. The agents process the sensor inputs
(images, IMU and GPS measurements), perform state estimation in
the VIO module and send the information alongside the odometry
and the keyframes (KFs) to the central server. The server fuses
these measurements in a pose-graph from which globally consistent
poses in a common reference can be obtained. These poses, together
with the compressed stereo point clouds, are fed to the Voxblox
framework [13] to build a dense representation of the explored area,
enabling the multi-robot global planner to compute paths which are
sent back to the agents for execution.

mixed integer programming models to encode the interac-
tions between robots [10], while others make use of grid
search, roadmaps [11] and sampling-based planning [12].
Recent works [2] show promising results in multi-robot
coverage planning, but they do not deal with the localization
of multiple agents in a common map.
In this work, we take inspiration from existing approaches
aforementioned, combining them in a new architecture com-
posed of a central server and a team of robots (i.e. agents).
The server collects the experiences of all robots and performs
optimization-based sensor fusion to obtain their poses in a
common GPS-based reference frame building up a joint,
global dense map of the environment. This map is then used
to generate global paths in a hierarchical fashion in order to
coordinate the agents.
The objective of the proposed pipeline is to provide a practi-
cal solution for applications in search-and-rescue scenarios.
Here, we assume that prior knowledge about the area of
interest is available (e.g. from satellite images) and that a
human operator assigns a list of goal positions to each robot
in the team.

In brief, the contributions of this work are the following:
• the design of a centralized agent-server architecture,

enabling merging of data from multiple agents (here
UAVs), reducing the computational load of each agent,

• the design of a hierarchical planning strategy for multi-
agent coordination in partially unknown space,

• an extensive evaluation of the proposed system in photo-
realistic simulations with up to four UAV-agents, and

• the source code of the proposed system.

II. METHODOLOGY

The proposed system architecture is composed of a central
server and a team of robotic agents, as illustrated in Fig. 2,
with the aim of coordinating this team to explore an area of
interest. Each agent is assumed to be capable of estimating its
egomotion running keyframe-based Visual-Inertial Odometry
(VIO) onboard – in our experiments, an adaptation of VINS-
Mono [14] is used. As agents here are small rotorcraft
UAVs, in order to follow a global path and avoid smaller
obstacles, we employ the local planning approach proposed
by [5], while the required local occupancy map is built up
using a front-looking stereo camera onboard each agent. To
limit the bandwidth requirement of communicating dense
scene information to the server, these stereo point clouds are
compressed by fusing the ones captured from subsequent
frames via voxel filtering. The resulting point clouds are
then referenced with respect to an anchor keyframe and are
sent together with the keyframe information (including pose,
keypoints and the 3D landmarks visible in the keyframe)
and the GPS readings corresponding to that keyframe to the
server.
The server performs some of the computationally more
expensive tasks, such as optimization-based sensor fusion,
mapping and global path planning. In particular, the VIO
keyframe poses get fused with the GPS information in order
to estimate each UAV’s trajectory in a global reference frame,
estimating the drift of the VIO of each agent. Using the
result from the sensor fusion, the compressed point clouds
are used to build up a global dense map of the environment
using Voxblox [13]. Based on the resulting dense map, a
hierarchical global path-planning strategy is employed to
coordinate the mission, such that each agent reaches safely
its goals in the previously unmapped area. In the following,
the individual parts of the system are described.

A. Notation

In this paper, capital letters denote coordinate frames (e.g.
A), bold capitals (A) denote matrices and bold small letters
(a) vectors. Rigid body transformations from coordinate
frame B to A are denoted as TAB , while the translational
part of any transformation T is denoted by p and the
rotational part as R. For notational brevity, we use TAB · v
to denote the transformation of the vector v from B to A.

B. Pose-graph Back-end

In order to establish the relationships between the different
types of measurements as well as amongst multiple agents,
we use four different types of coordinate frames as illustrated
in Fig. 3. The world frame W represents the common GPS
reference frame and is unique across all agents. For every
agent i we have a map frame Mi, representing the origin
of that agent’s drift-corrected map, which relates to W by
a fixed transformation TWMi

. Finally, the frame Oi denotes
the origin of the local VIO estimates describing the pose
of the IMU (frame Si). The drift of VIO is expressed as a
time-varying transformation TMiOi

(t), where t denotes the
time. Since in VIO systems the roll and pitch angles are

Fig. 3: Schematic depicting the transformation chains used in the proposed system. The world frame W denotes the GPS-reference frame
and is shared amongst all agents, while every agent i has a map with origin Mi and an origin Oi for the corresponding VIO estimate.
The body of agent i is indicated with the IMU frame Si. The drift of the VIO of each agent is encoded in the transformation TMiOi .
Every time a new keyframe gets inserted in the estimation of an agent, local optimization is triggered operating over the last N keyframes
(indicated by the shaded region).

observable, as proposed in [14], only the position and the

yaw angles of each keyframe are optimized. For the sake of

readability, in the following we drop the agent index i when

referring to transformations within a single agent.

1) Parameterization and Residuals: In order to optimize

the desired transformations, as indicated in Fig. 3, we need

to be able to express the measurements in terms of these

transformations to form residuals. The first type of residual

used is a prior, which we define as

rAB = TAB ⊟ T̃AB , (1)

where T̃AB represents the prior knowledge of the transfor-

mation TAB . The notation ⊟ indicates a generalized sub-

tractions, which in case of the used 4-DoF parameterization

corresponds to

T1 ⊟T2 :=
�

RT
2
(p1 − p2) φ(yaw(T1)− yaw(T2))

�T
,

(2)

where yaw(T) represents the yaw angle encoded in the

transformation T and the function φ unwraps the yaw angles

to lie within the range [−π,π). The second type of residuals

used are relative odometry constraints, representing the error

between the measured relative pose of the keyframes j and

p (estimated by the VIO) and the predicted transformation

based on the state variables:

r
j,p
rel = (Tj

MS)
−1T

p
MS ⊟ (Tj

OS)
−1T

p
OS . (3)

Furthermore, we define a residual to relate the current state

of TMO together with the keyframe poses T
j
MS to the VIO

poses (T
j
OS) as follows:

rjo = (TMO)
−1T

j
MS ⊟T

j
OS . (4)

2) Initial GPS Alignment: In order to bootstrap the esti-

mation of the transformation TWM between the VIO map

of one of the agents and the GPS reference frame, we align

the VIO poses to the GPS measurements using least squares.

The obtained transformation then gets refined in a non-linear

optimization using Gauss-Newton. To decide whether the ini-

tialization was successful or not, we compute the covariance

of the obtained transformation. As the translational part of

TWS can be estimated even without motion, we consider

the system initialized only if

σyaw < threshold (5)

holds, while σyaw is the marginal uncertainty of the estimated

yaw angle.

3) Local Optimization: In the local optimization for

agent i the poses of the most recent N keyframes (i.e.

TMiSi
), as well as the transformation between the Map and

the GPS-reference frame TWMi
are refined. Furthermore,

the current drift of the VIO (i.e. TMiOi
) is estimated.

The local optimization runs independently for every

agent and in our implementation is executed in separate

threads. The objective of the local optimization is given by

X k
i =

argmin
k

�

j=k−N

�

krjoik
2

Σoi
+

�

p∈Nj ,p<j

krj,prelk
2

Σrel
+ e

j
GPS

�

+ krkWMi
k2
ΣWMi

+ krMiOi
k2
ΣMiOi

, (6)

where X k
i represents the set of involved transformations:

X k
i :=

�

Tk−N
MiSi

· · · Tk
MiSi

TWMi
TMiOi

�

. (7)

The notation k·k2
Σ

denotes the squared Mahalanobis distance

with covariance Σ. The set Nj denotes all connected neigh-

bours of the keyframe j, which in our case corresponds to

a fixed number of temporal neighbours. The terms rkWMi

and rMiOi
are the prior residuals associated to TWMi

and

TMiOi
, respectively, while the error term e

j
GPSi

summarizes

all nj GPS measurements associated to keyframe j based on

the temporal proximity. In order to have a finer temporal

resolution for the data association, we utilize the VIO pose

of frame f relative to keyframe j to associate the GPS

measurements to the keyframe poses:

e
j
GPSi

=
nj
�

g=1

kTWMi
T

j
MiSi

(Tj
OiSi

)−1T
f
OiSi

pSiU−p
g
GPSi

k2
ΣGPSi

,

(8)

where pSiU is the offset of the GPS antenna expressed in

the IMU frame Si and p
g
GPSi

corresponds to the GPS mea-

surement g. After the optimization we recover the marginal

covariances ΣWMi
and ΣMiOi

corresponding to TWMi
and

TMiOi
, respectively, and use these as priors in the next

optimization step.

4) Loop-Closure Detection: In order to establish addi-

tional constraints within and across the agents’ trajectories,

we perform visual loop-closure detection in a similar fashion

as in [14] using the bag of binary words DBoW2 [15]. Since

we want to enable loop detection also across the agents,

a single database of words shared amongst all agents is

maintained. New loop-closures are detected by first querying

the database for visually similar candidates and the best Q

candidates are subjected to descriptor-based 2D-2D brute

force correspondence search. Any matches get checked for

their associated 3D landmarks, which are reprojected from

the query frame into the candidate frame and vice-versa,

followed by a 3D-2D RANSAC outlier rejection. If sufficient

inliers are found, the relative pose, e.g. indicated by T
S

j
i
Sk
1

and TS
p
i
Sk
i

in Fig. 3, in case of loop detection between

different agents or within the same trajectory, respectively,

is optimized by minimizing the reprojection error of the

established correspondences.

5) Global Optimization: Upon detection of a loop-

closure, both within one agent’s trajectory and across multi-

ple agents’ trajectories, we perform a global optimization

refining all poses and map transformations that are con-

nected. For example, in a 3-agent team (with labels 1, 2, 3)

let agents 1 and 3 have loop-closures between them. If an

additional loops get detected within either 1 or 3’s trajectory,

all transformations associated with 1 and 3 get optimized,

while the transformations within 2 remains independent. The

objective of this global optimization step, is given by

(9)

X = argmin
�

i∈M

�

�

j∈Mi

e
j
GPSi

+
�

p∈Nj ,p<j

krj,preli
k2
Σreli

+

k
�

p=k−N

krpoik
2

Σoi

�

+
�

ki,pj∈L

kr
ki,pj

lc k2
Σlc

,

where M denotes the set of all previously connected maps, L
denotes the set of loop closure constraints between keyframe

k of agent i and keyframe p of agent j. The optimization

variables X are given by

X :=
�

X1 X2 · · · X|M|

�

, (10)

where

Xi :=
�

TWMi
TMiOi

TMiS
1

i
· · · TMiS

k
i

�

∀i ∈ M,

(11)

while the loop closure residual r
ki,pj

lc is calculated as

r
ki,pj

lc = (TWMi
TMiS

k
i
)−1TWMj

TMjS
p
j
⊟ T̃Sk

i
S

p
j
, (12)

where T̃Sk
i
S

p
j

is the relative pose obtained as outlined in Sec.

II-B.4.

C. Mapping and Multi-robot Global Path Planning

The results of the optimization of the pose-graph in the

back-end are used to create a global, dense map of the

area in the world reference frame by means of the Voxblox

framework [13]. In order to construct the map, we use the

compressed point clouds as communicated by the agents

together with the optimized pose of the corresponding anchor

keyframe.

The updated information about the space is utilized by the

multi-robot global path planner in order to coordinate the

movements of the UAVs. At the beginning of a mission,

every agent is assigned an area to cover as an ordered

sequence of GPS waypoints, which have to be reached as

quickly as possible. The planner computes the paths for all

the agents in the global map and communicates them to the

respective agents. Given the current map, any unreachable

waypoints (e.g. placed inside an obstacle) are discarded by

the planner. Upon completion of the exploration mission,

each UAV returns to its respective home position (e.g. where

the planning started) by planning only in explored and known

space.

To compute the paths, we employ the standard version of

RRT* [16] implemented in the OMPL library [17]. The

global planner optimizes the path lengths and is optimistic,

i.e. it considers unknown space to be free and uses the Trun-

cated Signed Distance Field (TSDF) information available in

the Voxblox map. Nonetheless, when a robot has to return to

the starting position, the global planner adopts a pessimistic

behavior, i.e. planning happens only in known free space.

To avoid collisions amongst the robots, we propose a hierar-

chical approach for multi-robot coordination. At startup, we

arbitrarily assign a priority level to each agent, considering

that in the team there cannot be two agents with the same

priority. The planning happens hierarchically, meaning that

the possible flight area of an agent is constrained by both

the global occupancy map and the global paths of the agents

with higher priority levels. In other words, given the total

space VTOT , we remove the occupied parts Vo to obtain the

available obstacle-free volume Vf = VTOT \ Vo. Given n

agents, the available space for an agent i is the free space

minus the area of flight of all agents with higher priority

than i’s, i.e.

Vi = Vf \
�

j∈higher priority

Vj , i ∈ {0, · · · , n} . (13)

During the planning, we consider a safety bound of dimen-

sion d around the paths, while the agents are modeled as

spheres with radius r, with d > r. The planner starts by

computing the trajectory for the agent with highest priority,

whose flight space is subjected solely to obstacles. The

planner then sequentially proceeds to plan for lower priority

levels, until all agents have estimated a valid global path. In

order to be reactive to changes in the global map, the global

planner checks all the paths for collisions with the updated

map at a fixed rate. We consider a path to be invalid if it

is in collision with an obstacle or with another robot with

higher priority. In case a path for one of the UAVs is invalid,

the global planner re-plans the corresponding trajectory and

performs collision checking on the paths of the other lower

priority UAVs; all the invalid paths will be re-computed.

Fig. 4: Top view of the simulation with four agents. Four different
regions were selected and each arbitrarily assigned to one of the
agents. As the waypoints were chosen to form a lawnmower pattern,
some of them lie inside obstacles (e.g. buildings). The global
planner successfully identified and skipped these positions while
reaching the accessible remaining points of interest.

D. Local Path Planning and Obstacle Avoidance

On each agent, we run a local planner adapted from the

planning strategy of [5]. The trajectories are represented as

quintic Uniform B-Splines allowing to ensure smoothness

up to the snap, while to perform obstacle avoidance a

local occupancy model of the environment centered at robot

position is maintained. The shape of the B-Spline of order

k is locally determined by a set of k + 1 control points

pi, i ∈ [0, · · · k]. Using a set of equitemporal control-points,

the authors of [5] pose the problem of local trajectory re-

planning as an optimization problem with the following cost

function:

Etotal = Eep + Ec + Eq + El , (14)

where Eep is an endpoint cost function penalizing position

and velocity deviations at the end of the optimized trajectory

segment from the desired ones from the global path; Ec is a

collision cost function, Eq the cost of the integral over the

squared derivatives (acceleration, jerk, snap) and El is a soft

limit on the norm of the derivatives over the trajectory. In

order to initialize the control points, we utilize the trajectory

samples of the global path. However, as the global path is

expressed in W , while the reference frame for the controller

of agent i is Oi, the global trajectory is transformed using the

most recent received estimate of TWOi
as computed in the

sensor fusion back-end. In order to allow for changes in the

global paths when a global re-planning action is triggered

on the server, we adopt a receding-horizon approach, by

planning at a fixed distance along the global path from the

current agent’s position.

III. EXPERIMENTAL RESULTS

A. Benchmarking of Pose-graph Back-end

To the best of our knowledge, there is no available dataset

containing high-quality visual-inertial data, GPS data and

ground truth, so we evaluate the proposed system on the

Machine Hall (MH) sequences of EuRoC dataset [18], simu-

lating GPS measurements by disturbing the available global

position measurements with Gaussian noise of a standard

(a) Top-view of the experiment with the paths followed by the
agents.

(b) Map before global planning step for Agent 2 (in red).

(c) Planning result for Agent 2.

Fig. 5: Experiment with two agents assigned to overlapping areas
of interest. In (a) a top-view of the experiment is shown, where
the paths executed by Agents 1 and 2 are shown in green and
red, respectively. (b) shows the situation before the re-planning
step of Agent 2. The colored field indicates the traversable space
computed by Voxblox, where the color changes from green to red
in the direction towards obstacles. (c) shows the re-use of the map
created by Agent 1 enabling Agent 2 to plan a shorter path through
the same alley.

deviation of 0.15m. As these position measurements are ex-

pressed in the ground-truth frame, this allows us to evaluate

the quality of the estimated map-to-world transformation as

well.

The resulting Absolute Trajectory Errors (ATEs) of the

keyframe poses are shown in Table I. From the reported val-

ues, it can be seen that the proposed sensor fusion approach

is successfully able to eliminate the drift in the estimation. In

Dataset
VIO only Optimized Optimized*

RMSE [m] RMSE [m] RMSE [m]

MH01_easy 0.146 0.061 0.073

MH02_easy 0.238 0.082 0.095

MH03_medium 0.210 0.098 0.104

MH04_difficult 0.330 0.092 0.097

MH05_difficult 0.305 0.115 0.118

MH01-MH05 - 0.099 0.101

TABLE I: ATEs of the keyframe poses averaged over three runs as
they enter the proposed system using VIO only, the resulting output
of the proposed back-end optimization, and marked with a ‘*’ the
ATEs using the estimated TWM .

Message Type Mean Bandwidth Std Deviation

Keyframes 24.91 KB/s 16.05 KB/s

Point clouds 68.78 KB/s 35.35 KB/s

TABLE II: Bandwidth consumption statistics for the communica-
tion between one agent and the central server in the experiment
described in III-B.1. The network traffic necessary to send GPS
information to the server and to communicate the paths computed
by the global planner to the agents is negligible.

order to evaluate the quality of the estimated transformations

between the map(s) and the world frame, the last column

in Table I reports the ATE of the estimated trajectories

aligned to the ground-truth using the final estimate of the

corresponding transformations TWMi
. As it can be seen,

the ATE is only marginally increased when compared to the

ATE using least squares trajectory alignment, indicating a

high accuracy of the estimated transformations.

B. Experiments in Photo-realistic Simulations

The proposed system has been extensively tested in photo-

realistic simulations using the Gazebo and RotorS frame-

works [19]. The environment used is a reconstruction of

a chemical plant in Rüdersdof, Berlin1. A 3D-view of the

model, spanning an area of 120m×120m, is shown in Fig. 1.

In order to demonstrate the main capabilities of the proposed

system, three different experiments have been carried out:

1) Autonomous navigation along user-defined waypoints

with four agents inside the 3D model,

2) Map re-use for two agents with overlapping areas of

interest, and

3) Hierarchical planning for a team of three agents oper-

ating within the same area.

In the following, the experiments are described in detail.

Note that all results can be visualized in the accompanying

video at https://youtu.be/BlFbiuV-d10

1) Map navigation with multiple agents: In this experi-

ment we show the intended use-case of the proposed system,

guiding the safe and successful navigation of a team of four

UAVs in a previously unknown area given an ordered list of

user-defined points of interest (i.e. waypoints), as shown in

Fig. 4. The waypoints here were selected by dividing up the

space amongst the agents and sampling the corresponding

area to form a lawnmower pattern. All agents successfully

reached all accessible points of interest, while any ill-placed

1https://sketchfab.com/3d-models

waypoints (e.g. inside or too close to buildings) get discarded

by the global planner during navigation. After reaching the

last point of interest, all agents navigate successfully back to

their starting positions, by planning exclusively in known free

space. In Table II we report the bandwidth usage statistics

due to the communication between one agent and the central

server over the experiment. Thanks to the compression and

the filtering of the point clouds as described in Sec. II, the

average bandwidth consumption is maintained low.

2) Map re-use between two agents with overlapping areas

of interest: In this experiment, we showcase the advantage

of the proposed centralized architecture. As the dense map

contains all agents’ information, parts mapped by one agent

can be re-used for planning by another agent, as shown in

this experiments with two UAVs operating in overlapping

parts of the model. In Fig. 5b, the first agent, shown in

green, navigates through a small alley in order to reach its

first waypoint. The second agent, shown in red, exploits the

information gathered by the first agent, enabling it to take

the short path through the same alley instead of navigating

around the block, as illustrated in Fig. 5c.

3) Hierarchical planning for three agents within the same

area of interest: In the last experiment, we demonstrate

the proposed hierarchical approach of the multi-robot global

planner. As depicted in Fig. 6a, the goal positions for the

three agents are placed within the same navigation area.

The path followed by the agent with highest priority is

shown in red, while the trajectories of the agents with

intermediate and lowest priority are represented in green and

blue, respectively. Since the agent with highest priority has

to reach two waypoints placed in front of it, it plans straight-

line trajectories, while the other two agents have to compute

intertwined paths. While the UAV in green has to consider

only the red UAV, the area of flight of the blue UAV is

considerably reduced by the presence of the other two robots.

Nonetheless, all agents are able to reach the assigned goals

avoiding collisions amongst them and with the obstacles in

the map. In Fig. 6b we show a 3D-view of the planning step

when the agents are about to reach their second waypoints.

After the completion of the mission, all the agents return to

their respective homing positions.

IV. CONCLUSIONS

In this paper, we propose a multi-robot estimation and co-

ordination framework for autonomous navigation in partially

unknown environments, given a sequence of user-defined

points of interest. The system is demonstrated to guide the

navigation of a team of UAVs as robotic agents, success-

fully reaching these waypoints, while ensuring no collisions

amongst them or the scene. The UAVs share their experiences

with each other via a central server, which creates a globally

consistent map of the navigation environment using the

proposed multi-agent back-end to bring all estimates in a

common reference frame. This map is then used for multi-

robot global planning running on the server, coordinating the

movement of the team by communicating the computed paths

to the agents. These then navigate along the paths, while

(a) Top-view of the experiment with the paths followed by the
agents.

(b) 3D-view of the crossing paths, together with the traversable
space and the mesh from Voxblox.

Fig. 6: Experiment with three agents flying in the same area. The
sequence of waypoints is selected such that the paths of the agents
cross each other as shown in (a). The UAV with highest priority,
in red, has to reach two waypoints in front of it, while the other
two UAVs, in green and in blue (lowest priority), need to navigate
through the whole area in order to reach their goals. The UAVs
successfully avoid collisions with each other and the scene as shown
in (b).

performing state estimation and local obstacle avoidance

onboard. This architectural design allows us to drop some

of the typical assumptions commonly made in the multi-

robot path-planning literature, such as perfect knowledge of

the agents’ poses and the map of the environment.

Furthermore, the source code of the system will be made

publicly available.

Future directions will investigate the improvement of the

system in terms of scalability and the use of automatic

assignment of waypoints to agents following a pre-specified

strategy (e.g. maximizing coverage) in a bid to boost the

autonomy of multi-robot missions.

REFERENCES

[1] L. Teixeira, I. Alzugaray, and M. Chli, “Autonomous Aerial Inspection
using Visual-Inertial Robust Localization and Mapping,” in Field and

Service Robotics. Springer, 2018.
[2] T. Kusnur, S. Mukherjee, D. Mauria Saxena, T. Fukami, T. Koyama,

O. Salzman, and M. Likhachev, “A planning framework for persis-
tent, multi-UAV coverage with global deconfliction,” arXiv preprint

arXiv:1908.09236, 2019.
[3] H. Oleynikova, M. Burri, Z. Taylor, J. Nieto, R. Siegwart, and

E. Galceran, “Continuous-time trajectory optimization for online UAV
replanning,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2016.
[4] M. Burri, H. Oleynikova, M. W. Achtelik, and R. Siegwart, “Real-time

visual-inertial mapping, re-localization and planning onboard MAVs
in unknown environments,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2015.
[5] V. Usenko, L. von Stumberg, A. Pangercic, and D. Cremers, “Real-

time trajectory replanning for MAVs using uniform B-Splines and a 3D
circular buffer,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2017.
[6] L. E. Parker, “Path planning and motion coordination in multiple

mobile robot teams,” Encyclopedia of complexity and system science,
2009.

[7] P. Svestka and M. H. Overmars, “Coordinated path planning for
multiple robots,” Robotics and Autonomous Systems (RAS), vol. 23,
1998.

[8] S. J. Buckley, “Fast motion planning for multiple moving robots,” in
International Conference on Robotics and Automation (ICRA), 1989.

[9] J. van den Berg, J. Snape, S. Guy, and D. Manocha, “Reciprocal
collision avoidance with acceleration-velocity obstacles,” in IEEE

International Conference on Robotics and Automation (ICRA), 2011.
[10] E. J. Griffith and S. Akella, “Coordinating multiple droplets in

planar array digital microfluidic systems,” The International Journal

of Robotics Research (IJRR), vol. 24, 2005.
[11] M. Peasgood, C. M. Clark, and J. McPhee, “A Complete and Scalable

Strategy for Coordinating Multiple Robots Within Roadmaps,” IEEE

Transactions on Robotics (TRO), vol. 24, 2008.
[12] K. Solovey, O. Salzman, and D. Halperin, “Finding a needle in

an exponential haystack: Discrete RRT for exploration of implicit
roadmaps in multi-robot motion planning,” The International Journal

of Robotics Research (IJRR), vol. 35, 2016.
[13] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto,

“Voxblox: Incremental 3D Euclidean Signed Distance Fields for On-
Board MAV Planning,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2017.
[14] T. Qin, P. Li, and S. Shen, “VINS-Mono: A Robust and Versatile

Monocular Visual-Inertial State Estimator,” IEEE Transactions on

Robotics (TRO), vol. 34, 2018.
[15] D. Gálvez-López and J. D. Tardós, “Bags of Binary Words for

Fast Place Recognition in Image Sequences,” IEEE Transactions on

Robotics (TRO), vol. 28, 2012.
[16] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal

motion planning,” International Journal of Robotics Research (IJRR),
vol. 30, 2011.

[17] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine (RAM), vol. 19,
2012, http://ompl.kavrakilab.org.

[18] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The EuRoC micro aerial vehicle datasets,”
The International Journal of Robotics Research (IJRR), vol. 35, 2016.

[19] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “RotorS – A Modu-
lar Gazebo MAV Simulator Framework,” in Studies in Computational

Intelligence, vol. 625, 2016.

