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Abstract— This work presents a semantic-aware path-
planning pipeline for Unmanned Aerial Vehicles (UAVs) using
deep reinforcement learning for vision-based navigation in chal-
lenging environments. Driven by the maturity of works in se-
mantic segmentation, the proposed path-planning architecture
uses reinforcement learning to distinguish the parts of the scene
that are perceptually more informative using semantic cues, in
effect guiding more robust, repeatable, and accurate navigation
of the UAV to the predefined goal destination. Assuming that the
UAV performs vision-based state estimation, such as keyframe-
based visual odometry, and semantic segmentation onboard,
the proposed deep policy network continuously evaluates the
optimal relative perceptual informativeness of each semantic
class in view. A perception-aware path planner uses these
informativeness values to perform trajectory optimization in
order to generate the next best action with respect to the
current state and the perception quality of the surroundings,
essentially guiding the UAV to avoid flying over perceptually
degraded regions. Thanks to the use of semantic cues, the
policy can be trained in a large number of non-photorealistic
randomly-generated scenes, and results to an architecture that
is generalizable to environments with the same semantic classes,
independently of their visual appearance. Extensive evaluations
on challenging, photorealistic simulations reveal a remarkable
improvement in robustness and success rate with the proposed
approach over the state of the art in active perception.

Video – https://youtu.be/RaO3whUBVnc

I. INTRODUCTION

The capability of a robot to achieve precise localization

and perform safe navigation is a fundamental skill for

genuinely autonomous systems. In the case of Unmanned

Aerial Vehicles (UAVs), these abilities play an even more

significant role due to the agility of these platforms. For

example, in industrial inspection and package delivery, UAVs

have to map the environment with sufficient accuracy to

avoid collisions with obstacles and reach the goal position

accurately. However, both real-time localization and mapping

are still open problems since the most used sensors, such

as GPS, can fail numerous situations due to bad weather,

jamming, or in the presence of mountains or tall buildings.

Avoiding failures in localization systems for aerial robots

is fundamental because, as opposed to ground robots, they

cannot instantaneously halt all motion, but instead, they

either need to reach an emergency landing spot or to continue

flying towards their destination. Vision-based Simultaneous

Localization And Mapping (SLAM) is now well accepted
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Fig. 1: 3D-view of the path flown by the UAV towards the destination in
the Baxall experiment. The travelled path (in green) indicates that the robot
is able to successfully avoid areas that are problematic for camera-based
state estimators, such as water, while navigating on top of reliable textures,
such as terrain and buildings.

for UAV navigation [1]; however, its performance (i.e. ro-

bustness, accuracy) is heavily influenced by the condition

of the navigation environment. For example, vision-based

SLAM’s accuracy degrades significantly (and even fails) in

the presence of dynamic objects (e.g. people, cars, trees

moving in the wind) and areas with no texture or textures

exhibiting specularities (e.g. oceans, lakes).

This work proposes an active perception path-planning

algorithm for vision-based UAV navigation based on Rein-

forcement Learning, guiding the UAV to reach a predefined

goal position while avoiding texture-less and poorly textured

areas, as well as regions that are less reliable for localization,

such as lakes, streets with moving cars, and trees (Fig. 1).

Given as input a semantic mask of the scene, the proposed

framework outputs online the optimal policy that allows

steering the robot away from potentially dangerous areas by

assigning a perceptual informativeness score to each seman-

tic class. We train our policy in a set of non-photorealistic

randomly-generated 3D models, and we test it in a set of

previously unseen environments, including photorealistic 3D

models of real-life places. The algorithm is agnostic to the

semantic segmentation algorithm and works with any set of

semantic classes.

In brief, the contributions of this work are the following:

• the design of a reinforcement learning-based semantic-

aware path-planning algorithm for vision-based aerial

navigation in challenging environments,

• the design of a training framework and a policy archi-

https://youtu.be/RaO3whUBVnc


tecture able to generalize to unseen environments, and

• an extensive quantitative evaluation of the performances

of the proposed system with respect to the state-of-the-

art in active perception in photorealistic simulations.

II. RELATED WORK

The performance of Visual SLAM algorithms, providing

estimates of the robot’s pose and surroundings, is greatly

influenced by the motion and the path followed by the robot,

as sharp and highly dynamic movements can lead to wrong

estimates or even failure. Active perception constitutes a

fundamental step towards the creation of fully autonomous

systems, able to cope with the uncertainties present in a

real mission. The core concept in active perception is that

sensory performance can be improved by proper selection of

motion-control actions [2]. Modern works propose solutions

integrating perception, path planning and control in a unified

framework [3], [4]. From a theoretical perspective, the prob-

lem of active perception is formulated as Partially Observable

Markov Decision Processes (POMDPs) [5], which are in

general complex to solve. The drive to find efficient solutions

led to the conception of belief roadmaps [6] and belief trees

[7], while more recently, receding horizon approaches and

perception-aware path-planning algorithms emerged [8], [9],

showing how texture-less regions of the environment could

be avoided [10] using the internal state of a SLAM system.

One of the most relevant rival to this work is the

perception-aware planner in [8], proposing to generate mo-

tion primitives and evaluate them by considering the con-

centration of landmarks in each area, the probability of

collision and the distance to the goal. In [11], however, it

is demonstrated that landmark concentration alone is not

enough to identify the best areas to fly through, and instead,

a perception-aware planner employing semantics to evaluate

the quality of the candidate areas for navigation is proposed.

Using the semantic segmentation of the SLAM input im-

age as an additional cue in a perception-aware planning

algorithm, [11] was shown to achieve the best results in

terms of accuracy and robustness of localization to date.

Nonetheless, it is not able to adapt dynamically to changes

in the navigation area at flight time, as it assigns fixed binary

informativeness scores to every semantic class in the scene.

Furthermore, this approach requires manual score definition,

which can become challenging with an increasing number

of classes. Addressing this, this work proposes a pipeline

that tackles these limitations using reinforcement learning-

based active perception, dynamically identifying the most

reliable regions for localization from semantic information.

Reinforcement Learning (RL) can allow autonomous systems

to learn policies for complex tasks, such as control [12] and

obstacle avoidance [13], reducing the engineering effort to

the design of a suitable reward function [14]. In combination

with deep neural networks, deep RL provides a powerful

tool capable of mapping high-dimensional sensory inputs to

optimal actions, showing promising results in fields, such as

autonomous driving [15] and robot navigation [16], [17].

In this spirit, this work tackles the limitations of [11]

using a RL-trained deep-policy-based perception-aware path-

planning pipeline that is able to reduce the drift in vision-

based SLAM, without the need for manual setting of in-

formativeness scores, but with real-time and onboard auto-

tuning of scores instead. In a nutshell, given an input

semantic mask of the scene, the proposed planner learns

to encourage navigation through regions suitable for visual

localization, by adapting to the scene online and assigning

different importance to the different semantic classes. Our

approach exhibits great improvement in the success rate of

missions when compared to purely reactive planning and to

state-of-the-art perception-aware planners, such as the ones

proposed in [8] and [11].

III. METHOD

The problem targeted in this work is for a UAV to reach

a predefined goal pose, while minimizing the drift in the

onboard vision-based SLAM algorithm. Our main objective

is to identify and fly through suitable areas for visual local-

ization, avoiding spatial regions that lead to high error and

pose estimation failure. We formulate this as a path-planning

problem, where a deep RL agent is trained to identify reliable

areas from semantically labelled images. Semantics is a

valuable source of information for the agent, as drift in pose

estimation is generally consistent for areas belonging to the

same semantic class in case of good illumination conditions.

Moreover, using mid-level representations, such as semantic

masks as input is proven to yield better generalization of

the policy [18]. At the same time, our architecture allows

to decouple the problems of semantic labeling and path

planning. This decoupling is essential for deployability, as

learning directly the mapping from raw camera data to

perceptual informativeness for each semantic class requires

an implicit semantic segmentation step, which would take

extremely long training time in an RL fashion.

Given that real-time semantic segmentation has already

reached a high degree of maturity [19], this work assumes a

high-quality semantic segmentation image as input. Using an

adaptation of the approach of [11], we generate smooth and

collision-free trajectories in a receding horizon fashion, con-

sidering the limitations of keyframe-based Visual Odometry

(VO) systems used for pose estimation. Semantic classes are

mapped to a certain score of perceptual informativeness by

a policy trained in randomly generated scenes using Unity1

and the Flightmare frameworks [20]. These scores, recorded

per class, are successively fed to the path planner, which

encourages navigation in areas that cause less drift and keep

the best 3D landmarks estimated by the VO pipeline in the

field of view of the camera.

A. System Overview

As shown in Fig. 2, the proposed pipeline consists of

three main components; a monocular camera-based pose

estimation module, a deep RL agent and a path-planning

1https://unity.com/

https://unity.com/
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Fig. 2: Schematic overview of the pipeline. In the Estimation Module, we process the sensor inputs to estimate the pose of the UAV and the 3D landmarks.
The landmarks, together with the occupancy map obtained from the depth images, go through a classification step, where each point is assigned to a
semantic class. The RL agent utilizes the semantic mask to generate the optimal action, which consists of the set of weights to assign to each semantic
class. The optimal choice of weights is then communicated to the perception-aware path planner from [11]. Finally, the Path-Planning Module outputs the
optimal trajectory, while considering both the dynamics of the platform and perceptional quality.

module. We assume a stream of RGB and depth images

is available. The depth images are used to generate 3D

reconstructions of the local surroundings of the robot, while

the VO algorithm utilizes the RGB images to estimate the

robot’s pose. The dense point cloud is stored in an occupancy

map employing a 3D circular buffer [21].

We employ the keyframe-based VO system ORB-SLAM

[22] without loop closures to estimate the pose of the camera,

but our pipeline is agnostic to the adopted VO algorithm.

Since ORB-SLAM is a monocular vision-only system, the

scale cannot be retrieved. However, as our agent is trained

in simulation, we have access to ground-truth information

that is used to re-scale the estimated position and the 3D

landmarks.

Both the 3D occupancy map and the sparse landmarks go

through a classification step providing the semantic labels

for all the points, which are then fed to the path-planning

module. Given that the detection of moving objects (e.g.

cars, people, trees) and ground classification are not the

core contribution of this work, we use ground-truth semantic

masks in our experiments, but there are a plethora of off-the-

shelf algorithms available [23], [24]. The semantic mask also

serves as input to the deep RL policy, which outputs values

associated with the perceptual informativeness of each se-

mantic class. These values are communicated to the planner,

which uses them to reason about the next best action. The

policy output is utilized as a set of weights in the objective

function to be optimized in the path-generation step, favoring

the tracking and triangulation of points belonging to parts of

the scene useful for camera-based state estimation. In the

next section, the deep RL agent structure and its interface

with the path-planning module are explained in detail.

B. Perception-aware Path Planning

Our objective is to let the agent fly through areas well-

suited for VO by learning which semantic classes are less

likely to generate localization drift. The robot learns this

by interacting with the environment, selecting an action,

and receiving a reward value as feedback. Here, an action

corresponds to a set of weights for each semantic class in

the perception objective function, to be optimized in the path-

planning module. The planning pipeline is an adaptation of

[11], where originally semantic weights are manually as-

signed, and used in a kinodynamic A∗ path search, followed

by B-Spline trajectory optimization.

1) Kinodynamic Path Search: In the first planning step,

the aim is to encourage navigation in well-textured areas.

The path search is limited to the robot’s position in R
3

and, using the differential flatness of the multirotor systems,

the trajectory is represented as three independent time-

parametrized polynomial functions p(t):

p(t) := [px(t), py(t), pz(t)]
T , pd(t) =

K
∑

k=0

ad,kt
k (1)

with d ∈ {x, y, z}. We assume the multirotor system to

be linear and time-invariant, and we define its state as

s(t) := [p(t)T , ṗ(t)T , . . . ,p(n−1)(t)T ]T ∈ χ ⊂ R
3n, with

control input u(t) := p(n)(t) ∈ U := [−umax, umax]
3 ⊂ R

3

and n = 2, corresponding to a double integrator. Given the

current robot’s state s(t), the control input u(t) and a labelled

occupancy map M of the environment, we define the cost

of a trajectory as

J (T ) =

∫ T

0

(

wu‖u(t)‖
2+

N
∑

j=0

wjd
j
M (p(t),M)

)

dt+wTT,

(2)

where ‖u(t)‖2 is the control cost; d
j
M (p(t),M) represents

a penalty for navigating far away from areas associated to

the semantic class j ∈ {0, · · · , N} with N the total amount

of classes; and T is the total time of the trajectory.

The terms wu and wT are constant weights associated with

the respective costs, while the wj is the weight associated

with the semantic class j assigned by the current optimal

policy and is subjected to changes as the agent gathers

additional experience. The cost d
j
M (p(t),M) is defined as

d
j
M (p(t),M) :=

∑

vj∈Mj⊆M

dv(p(t),vj) =

∑

vj∈Mj⊆M

dxy(p(t),vj) + dz(p(t),vj),
(3)

where vj = [vx, vy, vz]
T are the voxels of the occupancy

map M with semantic label j, indicated with Mj ⊆ M. The



cost d
j
M (p(t),M) is composed of the two potential functions

that are calculated as

dxy(p(t),vj) := (px(t)− vx)
2 + (py(t)− vy)

2, (4)

and, by defining ∆z := |pz(t)− vz|,

dz(p(t),vj) := d∗∆z +
1

2

d∗
4

∆z2
−

3

2
d∗

2

, (5)

where d∗ controls the minimum height of the robot with

respect to the voxels in Mj . In order to speed up the search

in the A∗ algorithm, we use the same heuristic as in [11],

adapted to match the new cost definitions.
2) Trajectory Optimization: While the trajectory com-

puted in the path-searching step encourages navigation to-

wards informative areas, the trajectory optimization step

leverages the additional information given by the 3D land-

marks in the VO module. The trajectory π(t) is parametrized

as a uniform B-Spline of degree K and it is defined as

π(t) =

N
∑

i=0

qiBi,K−1(t), (6)

where qi are the control points at time ti with i ∈
{0, . . . , N}, and Bi,K−1(t) are the basis functions. Each

control point in {q0,q1, . . . ,qN} encodes both the position

and orientation of the robot, i.e. qi := [xi, yi, zi, θi]
T ∈

R
4 with θi ∈ [−π, π). The B-Spline is optimized in or-

der to generate smooth, collision-free trajectories, encour-

aging the triangulation and tracking of high-quality land-

marks. For a B-Spline of degree K defined by N + 1
control points {q0,q1, . . . ,qN}, our optimization acts on

{qK ,qK+1, . . . ,qN−K} while keeping the first and last

K control points fixed due to boundary constraints. The

optimization problem is formulated as a minimization of the

cost function

FTOT = λsFs + λfFf + λcFc + λlFl + λvFv, (7)

where Fs is the smoothness cost; Fc is the collision cost; Ff

is a soft limit on the derivatives (velocity and acceleration)

over the trajectory; Fl is the penalty associated with losing

track of the high-quality landmarks currently in the field of

view; and Fv is a soft constraint on the co-visibility between

control points of the spline. The coefficients λs, λc, λf , λl

and λv are the fixed weights associated to each cost. While

we maintain the original cost formulations, similarly to Eq.

2, we propose a novel perception cost that accommodates

multiple semantic classes:

Fl = −
N
∑

j=0

∑

lC∈LC
j

wj

5
∏

k=0

ok(q, lC), (8)

where LC
j is the set of 3D landmarks associated to class j

expressed in camera frame C, and ok a smooth indicator

function determining the visibility of landmark lC from

the control pose q [11]. The optimal set of weights for

each semantic class is computed in real-time by a policy

modeled as a neural network, trained in an episode-based

deep RL-fashion. In the next section, we introduce our policy

architecture and explain the training process in detail.

C. Deep RL Policy

The RL policy maps from semantic masks to actions,

employing an Actor-Critic model with the architecture shown

in Fig. 3. Here the action consists of the set of weights

wj ∈ [0, 1] with j ∈ {0, · · · , N} used by the planner in Eq. 2

and Eq. 8, where N is the number of semantic classes in the

scene fixed by the user. The Actor and the Critic networks

share the first part, composed of a 3-layer Convolutional

Neural Network (CNN), followed by a Long-Short Term

Memory (LSTM) module. The LSTM is responsible for the

memory of the policy and captures spatial dependencies that

would otherwise be hard to identify, as some semantic classes

can be linked together (e.g. cars and roads). The final part

of the Critic consists of two Fully Connected (FC) layers

composed of 64 units, while the optimal action is output

by the Actor from three FC layers with 128 units each.

Policy optimization is then performed at fixed-step intervals

employing the on-policy algorithm PPO [25]. Moreover, in

order to reduce the hyperspace dimension, we convert the

color mask into grayscale and downsample the resulting

image. We utilize the semantic image as input because this

mid-level visual representation is more generic than the raw

color image, and it is demonstrated to allow faster training

and improved policy performances [18]. Using the raw image

from the sensor directly makes the training cumbersome and

generalization of the policy harder, as the same semantic

class can have different textures and visual appearances (e.g.

in the cases of terrain, vegetation, and cars).

The training of the policy is then performed based on the

data and the rewards collected in each episode. Since we aim

to reduce the localization error and increase the chances of

getting to the destination, the reward function received by

the RL agent at step t is defined as

Rt(p(t), e(t)) := RS + wERE(e(t)) + wGRG(p(t)), (9)

where RS is the survival reward, RE is associated to the

localization error e(t) and RG to the progress towards the

goal position. The survival reward is assigned at every step,

until tracking is lost:

RS :=

{

0 if lost track

1 otherwise
. (10)

Note that we do not penalize explicitly with a negative final

reward when the VO system loses track, in order not to

penalize promising actions that lead to high errors due to

faulty initialization of the visual tracks at the beginning of

the episode.

The reward associated to the localization error is also

assigned in every step, and encourages to take actions that

reduce the drift in the VO system:

RE(e(t)) :=











Rmax
E if e(t) ≤ emin

0 if e(t) ≥ emax

Rmax
E exp(−(e(t)− emin)) otherwise

,

(11)
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Fig. 3: Schematic representation of the policy architecture and its interaction with the path planner. The semantic images are rendered in the Unity engine
and are first converted into grayscale images and downsampled. The obtained images go through the Actor-Critic network, composed of three CNN layers,
a linear FC layer and a LSTM module. The Critic then outputs the Q-Value from two FC layers, while the Actor feeds the optimal action to the planner,
consisting of a set of weights associated to each semantic class. The policy optimization is performed by means of the PPO algorithm [25].

(a) Visual Image. (b) Semantic Mask.

Fig. 4: Example of visual image and its corresponding semantic mask
rendered by the Unity engine at training time. The training scenes are
generated by the game engine, placing objects (e.g. trees, rocks, cars,
houses) randomly in the space.

where emin and emax are the minimum and the maximum

acceptable errors, respectively, and Rmax
E is the maximum

reward value. Finally, the last component of the reward

function favours the progress towards the goal position pG(t)
and is inversely proportional to the distance between the

current robot position and the destination:

RG(p(t)) := Rmax
G

1

‖p(t)− pG(t)‖
, (12)

where Rmax
G is the maximum achievable reward value. When

the agent reaches the goal, it receives a final reward equal

to Rmax
G .

At the beginning of each episode, we place the robot at a

given starting position, initialize the VO tracking system, and

set an end target position. The agent navigates towards the

goal generating trajectories by optimizing the cost functions

defined in Eq. 2 and Eq. 7, given the set of weights output

by the current policy. During the flight, the agent monitors

the localization error and the episode ends when either the

goal is reached or the VO system loses track.

IV. EXPERIMENTS

A. Policy Training

In order to maximize the generalization of the policy

and to avoid overfitting to a specific scene, we train the

agent in a set of randomly generated environments using

the game engine Unity and the Flightmare framework [20].

Fig. 5: Reward and RMSE trends over the training steps, shown as blue solid
and red dashed curves, respectively. In the initial phase of training, the sharp
increase in the reward demonstrates that the RL agent learns quickly the
most reliable semantic classes for localization, followed by a plateau, where
the optimal policy is reached.

The simulated UAV is equipped with a front-looking camera

mounted with a pitch of 60◦. The Unity engine provides the

images required by the VO systems, the semantic masks,

as well as the depth images to perform obstacle avoidance.

Based on [26], the depth images are corrupted by zero-mean

Gaussian noise in order to mimic the noise in real sensors,

such as stereo or depth cameras.

At the beginning of each episode, a new scene is gen-

erated, and a goal destination is placed randomly in the

scene (Fig. 4). The UAV starts navigating towards the goal

position, and the episode ends when either the goal is reached

or the VO system loses track. The agent outputs actions

at fixed time intervals (or steps), communicates them to

the perception-aware planner, and collects the reward as

feedback. In the first episode of the training process, the

policy is initialized randomly. The training continues until

the maximum number of steps across all episodes is reached.

Here, we set this maximum to 9000 steps.

All scenes are characterized by the same semantic classes

(pavement/road, terrain, water, trees, buildings and cars).

We use common classes used by several state-of-the-art

semantic-segmentation algorithms, but our system can handle

any set of classes. The reward parameters are set to Rmax
E =

5 and Rmax
G = 50, with minimum and maximum localization



Experiment Ours [11] [8] Reactive

Racetrack

Success Rate [%] 100 80 35 40

RMSE [m] 2.4 ± 0.2 2.5 ± 0.2 8.4 ± 4.0 6.4 ± 0.9

Missed Distance [m] 4.5 ± 0.7 4.6 ± 0.4 17.3 ± 11.8 6.5 ± 1.3

Path Length [m] 458.4 ± 11.1 464.1 ± 7.4 476.4 ± 56.0 402.4 ± 1.3

Villages

Success Rate [%] 90 85 10 75

RMSE [m] 1.2 ± 0.1 1.3 ± 0.4 2.8 ± 1.0 5.8 ± 1.3

Missed Distance [m] 3.8 ± 0.9 4.5 ± 1.2 9.8 ± 1.5 10.8 ± 2.5

Path Length [m] 378.2 ± 12.8 377.5 ± 10.5 343.7 ± 3.5 338.4 ± 6.5

Highway

Success Rate [%] 95 90 35 80

RMSE [m] 2.1 ± 0.4 6.1 ± 1.4 3.1 ± 2.1 2.7 ± 0.5

Missed Distance [m] 6.4 ± 1.2 8.6 ± 1.1 8.6 ± 3.9 6.4 ± 0.6

Path Length [m] 583.7 ± 33.3 638.0 ± 26.8 673.2 ± 11.3 660.0 ± 88.1

Baxall

Success Rate [%] 100 100 45 70

RMSE [m] 0.9 ± 0.2 2.2 ± 0.2 3.7 ± 2.3 1.8 ± 0.2

Missed Distance [m] 1.8 ± 0.3 2.8 ± 0.7 3.6 ± 0.8 2.5 ± 1.2

Path Length [m] 439.0 ± 10.7 424.3 ± 12.1 738.1 ± 10.9 397.8 ± 8.3

Fraser

Success Rate [%] 100 90 10 20

RMSE [m] 1.3 ± 0.1 2.3 ± 0.3 2.0 ± 0.1 2.3 ± 0.3

Missed Distance [m] 5.0 ± 1.4 5.7 ± 1.4 5.4 ± 0.1 5.2 ± 1.6

Path Length [m] 644.4 ± 9.6 652.7 ± 9.8 747.5 ± 10.0 678.9 ± 40.3

House Garden

Success Rate [%] 100 70 15 20

RMSE [m] 0.8 ± 0.1 2.6 ± 0.7 1.6 ± 0.5 2.1 ± 0.1

Missed Distance [m] 2.6 ± 0.4 5.5 ± 0.9 3.8 ± 0.5 7.1 ± 0.3

Path Length [m] 435.1 ± 17.8 500.0 ± 81.9 420.3 ± 6.8 503.1 ± 79.0

TABLE I: Results of the experiments in the six simulated scenes. We report
the success rate of the goal-reaching task for the different planners, as well as
the average localization RMSE, the missed distance from the goal and path
length, all averaged over 20 runs. The averages are computed only for the
experiments where the goal is reached. The first three scenes (Racetrack,
Villages and Highway) are built using the game engine Unity, while the
others (Baxall, Fraser and House Garden) are 3D photorealistic models
of real-life places obtained from photogrammetry. The best performance in
each scene is shown in bold.

errors emin = 0.5m and emax = 2.5m. To compute the total

reward as in Eq. 9, the weights for components associated

to the localization error and to the goal-reaching task are set

to wE = 3 and wG = 0.1, respectively.

The training performance of the agent is shown in Fig. 5,

where the reward and the Root Mean Square Error (RMSE)

of the VO system with respect to ground-truth position

are reported. As depicted by the initial sharp increase in

the reward curve, the agent learns quickly to identify the

semantic classes that allow robust localization, resulting in

a decrease in the pose estimation error. The training perfor-

mance successively decreases, as visible from the plateau in

the reward curve and the small increase in the translational

error. Despite the decrease due to slightly higher RMSE,

the reward does not drop, as the agent is able to reach

the target destination more frequently. This indicates that

the optimal behavior is reached and that the oscillations in

performance are linked more to the randomness of the scene

and consequently, of the VO algorithm’s performance rather

than to wrong action selection.

B. Tests in Previously Unseen Environments

A series of experiments in challenging scenes are con-

ducted to show the effectiveness of the proposed method.

The test environments are not experienced by the policy at

training time, and, similarly to [11], they are specifically built

to create problematic situations for camera-based odometry

algorithms, such as water with moving waves, cars, and trees

moving in the wind. The scenes are either built from scratch

using the Unity game engine or obtained from 3D models of

real-life places from photogrammetry2. In total, we test six

different scenes as shown in Fig. 6.

1) Test Set-Up: In each scenario, we command the UAV

to fly to a set of 20 goal positions placed randomly within

a target area. To evaluate the approach, we use the state

estimation error as a metric since we do not encounter

crashes against obstacles, despite high localization errors,

thanks to the usage of local occupancy maps for obstacle

avoidance. We compare the performance of our learning-

based method with a purely reactive planning strategy, the

semantic-based path planner from [11], and the perception-

aware method proposed in [8]. The reactive planner is based

on our planner without considering perception, i.e. ignoring

the action from the RL agent and setting the weight wj in

Eq. 2 and λl and λv in Eq. 7 to zero.

The semantic-based planner of [11] uses its original imple-

mentation, but we modify it to accommodate an unlimited

number of semantic classes, since the original version con-

siders only two (i.e. terrain and water). We tune it once

for all scenes to trust only reliable classes for vision-based

localization, such as terrain, buildings and roads. As this

planner assigns binary weights to each class, it is concep-

tually equivalent to a supervised learning classifier, trained

to discriminate only between reliable and unreliable classes,

but unable to adapt dynamically to the environment.

In all the scenes, the goal positions are the same for all

the planners for fairness of comparisons, while the initial

positions may differ by a couple of meters due to the

movements necessary to initialize ORB-SLAM.

2) Result Metrics: For each experiment, we report the

success rate, the translational RMSE of the VO system, the

traveled path length, and the missed distance, i.e. the distance

between the end position of the robot and the real position

of the goal. We define a run to be successful if the goal

is reached and the VO system does not lose track. Notice

that we do not explicitly include the missed distance in the

reward function at training time, as it is included implicitly

in the minimization of the estimation error. The results are

summarized in Table I, where the numerical averages are

computed only for the successful runs. Fig. 6 shows the most

representative trajectories for the different planners in the test

scenes.

3) Result Discussion: Our deep RL-based planner reaches

the highest success rate across all the experiments, showing

an increase in robustness compared to the other planning

strategies. More importantly, we demonstrate that our policy

network can safely transfer from the randomly generated

training scenes to the test environments without the need of

additional fine-tuning. We also experience a general decrease

2https://sketchfab.com

https://sketchfab.com


(a) Top-view of the scene Racetrack. (b) Top-view of the scene Villages.

(c) Top-view of the scene Highway. (d) Top-view of the scene Baxall.

(e) Top-view of the scene Fraser. (f) Top-view of the scene House Garden.

Fig. 6: Top-views of the test scenes with example trajectories for the different planners, with the goal position represented with a magenta star and final
positions as colored squares. As an illustration, we select one good representative successful trajectory for each planner in every scene. While our planner
(green) is consistently able to avoid dangerous areas by adapting dynamically to the environment, the semantic-aware planner [11] (red) adopts a binary
weighting scheme for the different semantic classes, leading to worse success rates. The reactive planner (cyan) instead finds the shortest path to the
goal passing through dangerous areas (e.g. lakes, woods), while the perception-aware planner of [8] (orange) follows trails of unsuitable landmarks for
localization, causing large detours and failures in the camera-based state estimation system.

in the estimation errors, especially in the experiments for the

Villages, Highway, Baxall and Fraser scenes. The trajectories

generated by our deep RL-based planner favor flights through

the most reliable regions of the environments, such as terrain

and roads, avoiding moving water and trees. However, as our

approach and [11] have the same path-generation back-end,

the localization errors of these pipelines are similar, since

the performance of vision-based state estimators is directly

affected by the path followed by the camera. This behavior

is expected, since a qualitative comparison of the trajectories

generated by the two planners shows their similarity, espe-

cially in Racetrack (Fig. 6a) and Villages (Fig. 6b). Moreover,

[11] is tuned manually to assign a higher weight on the most

reliable semantic classes in the scene, and, consequently,

we expect that the behavior of their planner is close to

optimal. Nonetheless, our RL-based approach reaches higher

robustness, as the possibility to change the weighting scheme

of the semantic classes online allows to better adapt to



changes in the scene and to avoid areas with unreliable

texture for localization. This indicates that, while semantics

are a powerful source of information, a binary approach, as in

the case of supervised learning-based planners, is not capable

of handling more complex scenes and safety requirements

necessary in real-world applications.

Instead, the reactive planning strategy takes the shortest path

to the goal positions, forcing the robot to fly through areas,

such as water and woods that decrease the success rate and

the localization accuracy. This effect is exacerbated in the

experiments Villages and House Garden.

Finally, the planner by Zhang and Scaramuzza [8] has the

lowest success rate in almost all the scenes. As this planner

uses the landmark concentration to find the best route, it

follows trails of landmarks without differentiating them on

their appearance. Thus, it flies the robot to unnecessary

detours trusting unreliable textures for localization (Baxall,

Fraser), causing larger drift and failures in the state estima-

tion algorithm.

Overall, while the different planning strategies give com-

parable performance of the vision-based state estimation (in

case of a successful run), our method exhibits a remarkable

and consistent increase in robustness and success rate for

goal-reaching tasks in challenging scenarios. Thanks to its

capacity of adapting dynamically to the scene, our deep

RL-based planning pipeline can fly the UAV towards the

destination safely and accurately, demonstrating a noticeable

boost in performance compared to the state of the art.

V. CONCLUSION

In this paper, we propose a deep RL-based perception-

aware path-planning architecture for goal-reaching tasks.

Our approach pushes the limits of the state of the art

by incorporating reinforcement learning into semantic-based

active perception, allowing the robot to learn how to adapt

dynamically to changes in the navigation area. Our RL agent

can map from semantic to perceptual informativeness by

assigning importance weights to each semantic class in the

scene. We demonstrate that our policy architecture can be

easily generalizable without fine-tuning to a set of testing

environments not experienced at training time. Our design

allows us to navigate through areas with more challenging

perceptual conditions, showing an increase in success rate

and robustness with respect to purely reactive planning and

the latest available solutions in state-of-the-art of active

perception.

Future directions include investigating the incorporation

of semantic segmentation networks in the pipeline in re-

placement of high-quality masks, and the adaptation of the

policy network to handle the noise and uncertainty of labels

in semantic segmentation.
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