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Abstract— This work presents a pipeline for autonomous
emergency landing for multicopters, such as rotary wing
Unmanned Aerial Vehicles (UAVs), using deep Reinforcement
Learning (RL). Mechanical malfunctions, strong winds, sud-
den battery life drops (e.g. due to cold weather), failure
in localization or GPS jamming are not uncommon and all
constitute emergency situations that require a UAV to abort its
mission early and land as quickly as possible in the immediate
vicinity. To this end, it is crucial for a UAV that is deployed
in real missions to be able to detect a safe landing spot
efficiently and proceed to land autonomously, avoiding damage
to both its integrity and the surroundings. Driven by the
advances in semantic segmentation and depth completion using
machine learning, the proposed architecture uses deep RL to
infer actions from semantic and depth information, flying the
robot towards secure areas, while respecting safety constraints.
Thanks to our robust training strategy and the choice of these
mid-level representations as input to the RL agent, we show that
our policy can directly transfer to the real world, without the
need for any additional fine-tuning. In a series of challenging
experiments both in simulation and with a real platform, we
demonstrate that our planner guides a rotorcraft UAV to a
safe landing spot up to 1.5 times faster and with double success
rate than the state of the art (including a commercially available
solution), paving the way towards realistically deployable UAVs.

I. INTRODUCTION

Multicopters are highly agile and versatile Unmanned
Aerial Vehicles (UAVs), which can be utilized in a variety of
applications, such as search-and-rescue missions, inspection
and 3D reconstruction, surveying and goods delivery. How-
ever, several dangerous events can occur during deployment.
Adverse atmospheric conditions, such as cold weather or
strong wind gusts, can unexpectedly shorten the battery life,
whereas mechanical malfunctions and localization failures
can potentially lead to crashes. Commercial drones, since
they are designed to fly over populated areas, remain capable
of landing in such critical situations, even with reduced
battery voltage or partially working rotors. It is, therefore,
fundamental to enable UAVs to detect safe landing spots
nearby and autonomously land there in case of an emergency.
The problem of detecting a safe landing area assumes greater
importance in the case of navigation in urban settings, as
damage needs to be avoided not only to the body of the
drone and the landscape, but also to moving cars, peo-
ple, etc. Moreover, given the limited payload capabilities
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Fig. 1: Safe emergency landing performed during a real-world experiment.
Using semantic and depth information, the multi-rotor UAV finds a safe landing
area and autonomously descends towards it, while avoiding collisions with the
environment.

of multi-rotor drones, such UAVs are generally equipped
with a minimal sensor set-up composed of cameras and
range sensors, rendering the emergency landing problem
even more challenging, as a suitable landing location has
to be identified by relying on limited sensory information.
Recent solutions proposed in the literature either require
manual intervention at the landing area by placing fiducial
markers to identify a safe spot on the ground [1], [2], or
require dense online 3D mapping of the environment [3],
[4]. While the former methods are not suitable for emergency
landing in unstructured environments, the latter ones, despite
being more flexible, require high-quality sensory inputs. This
assumption limits the applicability of these approaches, as
their sensing pipeline cannot cope with the high level of
noise during outdoor real-world flights, leading to failures.
Moreover, these methods reason only about the geometry
of the navigation area dismissing more general and rele-
vant context, for example, the fact that some areas can be
identified as clear spaces, but are unsuitable for landing,
such as rooftops and roads. In order to overcome this issue,
pipelines use high-level semantic information, which has
been receiving growing attention in recent years [5], as
semantic segmentation has been proven to be extremely
useful for path-planning applications [6]. However, these
approaches have been deployed in simulation only, raising
questions about their applicability in real-world missions.

Motivated by these challenges, we propose a deep Rein-
forcement Learning-based (RL) emergency landing pipeline
that detects safe landing areas from both depth and semantic
information, by relying on a minimal sensor set-up composed
of a monocular RGB camera. Thanks to recent findings
in depth estimation and semantic segmentation using deep
learning, a single camera snapshot is sufficient to recover the
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necessary information to land a UAV safely. The proposed
RL agent, taking as input depth and semantic images, outputs
high-level commands to find a suitable landing spot and
navigates the UAV towards it as fast as possible, while
avoiding collisions (Fig. 1). We demonstrate that we can
train the proposed policy only in simulation and directly
deploy it in real-world experiments, where other state-of-
the-art planners fail. This work represents a fundamental step
towards more secure and reliable autonomous drones, able to
detect safe areas and land in case of an emergency respecting
safety constraints.

In brief, the contributions of this work are the following:
• the design of a semantic-aware policy architecture that

can be trained in simulation only and then deployed on
a real UAV,

• an extensive evaluation of the proposed system in both
simulation and real-world experiments, and

• the source code of the proposed system.

II. RELATED WORKS

Despite the increasing importance given to safety, emer-
gency landing of drones still remains an open problem,
especially in unknown environments [7], [8]. Detecting a safe
landing area and approaching it are both challenging tasks,
since factors such as obstacles, uncertainties in state esti-
mation, and the platform’s dynamics must be accounted for.
From a control theory perspective, this problem is cast as an
optimization, where the optimal motor commands are found
with respect to a final objective, e.g. minimizing fuel us-
age [9]. A plethora of approaches have been proposed, rang-
ing from optimization-based nonlinear control strategies [10]
to more complex solutions, built upon optimal policy search
using deep reinforcement learning [9]. These solutions are
demonstrated to be extremely effective in controlling a
range of different platforms, such as quadrotors [10] and
spacecrafts [9], even under noisy state estimation by using
learning-based strategies to model the robot’s dynamics [11].
However, as the focus is solely on the control problem, they
assume that a landing target is given and do not deal with ob-
stacle avoidance. In the literature, as well as in commercially
available solutions such as Google Wing and Amazon Prime
Air, a common approach is to manually mark suitable landing
spots using highly-distinctive fiducial markers. These are also
employed to enable small quadcopters to land on top of other
moving platforms, such as ground robots [2], or maritime
vehicles [12]. In these cases, the presence of the fiducial
marker is fundamental, as its simple tracking facilitates the
task greatly. In this direction, the recent work by Polvara
et al. [1] proposes a reinforcement learning-based system,
using domain randomization to enable a quadrotor to land
on top of a fiducial marker under perceptual aliasing caused
by different background textures, including floor tiles, grass,
terrain and concrete. While they demonstrate it is possible
to reach a human-like level of performance in real-world
experiments by relying on RGB images only, their approach
cannot be utilized for emergency landing in unknown envi-
ronments, since it relies on the presence of a marker and does

not deal with obstacles and occlusions. To overcome this
limitation, more sophisticated vision-based pipelines that do
not rely on fiducial markers have been proposed, using either
geometrical [3], [4], [8] or deep learning approaches [7],
[13]. These solutions are more flexible and allow robots to
land safely in unstructured and unknown environments [8].
To identify a suitable spot without maps known a priori,
they employ RGB, depth and semantic images, and output
the desired landing location [7], [14]. They are able to
actively avoid collisions against obstacles by first generating
a map of the area online, and then planning in it [8]. The
work by Foster et al. [4] explicitly creates an elevation map
using depth completion to identify a suitable landing spot,
and then generates a path to that position in a separate
path-planning module. Similarly, Mittal et al. [3] identify
a safe landing area by processing dense depth images from
a stereo camera and extracting terrain information, such as
steepness and flatness, while also considering depth accuracy
and the estimated energy consumption to reach a candidate
location. Once a final position is identified, a safe path to
the landing area is computed. While these approaches are
validated in real-world experiments, they assume that the
dense depth input, either from depth completion or stereo
matching, is stable and accurate. However, this hypothesis
might not be valid when flying at higher altitudes, as depth
uncertainty increases with the squared value of depth [15],
and stereo matching can provide accurate depth information
only in a short range. Another line of research utilizes Neural
Networks (NNs) for binary classification of the terrain into
either safe or hazardous areas [7], while performing landing
site detection and tracking of people [5]. The training is per-
formed on either satellite images or synthetic datasets [16],
with very few works tested in real-world experiments [14].
Furthermore, this category of approaches performs binary
classification of the landing area, not exploiting the complete
semantic knowledge extracted from sensor readings. Using
the full semantic mask can be beneficial, as it could allow
higher-level reasoning on the structure of the environment to
identify safer landing areas faster.

Inspired by the shortcomings of these approaches and the
need for emergency landing strategies for realistically de-
ployable UAVs, in this work we propose a deep RL approach
that employs semantically labeled images and depth maps
to perform emergency landing of UAVs in urban scenarios.
This is performed by leveraging the most recent results
in deep learning for depth completion [17] and semantic
segmentation [18]. Using these mid-level representations as
inputs can alleviate the simulation-to-reality gap, allowing
for faster and more stable training of deep RL agents [6],
[19]. We demonstrate that our policy, trained exclusively
in simulation, can be directly deployed onboard a UAV in
real-world missions. To run onboard drones with limited
computing capabilities, the proposed pipeline is designed in
a modular fashion, that allows to outsource depth estima-
tion and semantic segmentation to cloud-based resources,
if needed. We compare our approach against both a state-
of-the-art landing pipeline [3] and a commercially available
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Fig. 2: Schematic overview of the pipeline. The input to the system is a monocular RGB image, which is used by a semantic segmentation NN [18] to generate
a semantic mask of the environment. A depth completion network [17] outputs a dense depth map of the surroundings using the RGB image and sparse depth
information. The semantic mask and the depth map are used by the RL agent to generate high-level commands, that are successively fed to the robot’s low-level
controller.

solution, demonstrating that our approach reaches higher
success rates, as well as faster landings.

III. METHODOLOGY

Our main objective is to identify a safe landing area
and perform the descending maneuvers safely and as fast
as possible to reduce the flight time. We formulate this
as a deep reinforcement learning problem, where an RL
agent is trained to identify suitable areas by means of
depth maps and semantically labeled images. While depth
maps carry information about the shape of the environment
(e.g. obstacles, free space), semantics expose the agent to
the spatial relationships between different classes (e.g. cars
and roads; houses and grass) [6], speeding up the search
for valid landing spots. Moreover, using these mid-level
representations as input to a deep RL agent is proven to yield
better generalization of the policy [19]. Learning directly
from raw camera data to command actions requires an
implicit semantic segmentation and depth estimation step,
which would take an extremely long training time in an RL
fashion. Our architecture allows to decouple the problems of
depth estimation and semantic labeling from path planning
and control. This decoupling is essential for portability and
deployability, as by simply providing access to cloud-based
computing resources, we can enable any flying platform
to employ our learnt policy. Given the recent findings in
semantic segmentation [18] and depth completion [17] using
deep learning, this work assumes that semantically labeled
images and depth maps are available. These inputs are fed
to the agent, which outputs high-level commands that are
then processed by a low-level controller. The RL agent is
trained in photorealistic simulations only, initially by using
ground-truth semantics and depth, and then fine-tuned by
replacing these high-quality inputs with predictions from
NNs. This procedure fills the simulation-to-reality gap and
leads to policy generalization, allowing us to test the agent
in real-world experiments without additional fine tuning.

A. System Overview

An overview of the proposed pipeline is shown in Fig. 2,
where we assume a stream of RGB images as input. Thanks
to the level of maturity of state-of-the-art semantic segmenta-
tion and depth completion using deep learning, a monocular
camera snapshot and sparse depth seeds are sufficient to
extrapolate the semantic masks and the depth maps. The
RL agent is then tasked to find a suitable landing spot and
descend towards it by generating high-level commands that

are sent to the robot’s low-level controller. While depth and
stereo cameras can provide information in the range of a few
meters, depth completion methods can estimate depth with
a longer range, albeit at the expense of higher noise levels.
Nevertheless, long range information is beneficial in drone
landing, enabling a platform to be proactive with respect
to collisions. The modular design of the proposed pipeline
decouples the RL problem from semantic segmentation and
depth estimation, allowing our system to run onboard a small
UAV.

B. Deep RL Policy

The RL agent maps semantically labeled images and depth
information to actions employing an Actor-Critic model with
the architecture shown in Fig. 3. Here an action consists
of a high-level command (lateral movement, halt motion,
descending motion) that can be selected from a set of 10
possible actions. In the following, we describe the policy
architecture and the reward function used to train the agent
in more detail.

1) Policy Architecture: The Actor and the Critic networks
share the first part, composed of a 3-layer Convolutional
Neural Network (CNN). The final part of the Critic consists
of two Fully Connected (FC) layers composed of 32 units,
while the action is output by the Actor from three FC layers
with 64 units each. Policy optimization is then performed
at fixed-step intervals employing the on-policy algorithm
PPO [20]. Moreover, in order to reduce the hyperspace
dimension, we convert the color semantic mask into a single
channel and downsample both the resulting image and the
depth map to 128 × 128 pixels. Semantics and depth are
mid-level visual representations that are more generic than
raw color images, and they are demonstrated to allow faster
training and improved policy performances [19].

2) Reward Function: The training of the policy is per-
formed based on the data and the rewards collected in each
episode. At each timestep, the total reward is composed of
different terms:

RTOT := ωtRt + ωSRS + ωCRC + ωARA +RT , (1)

where Rt is the step reward, RS is associated to the semantic
classes in view, RC to collisions between the robot and
the environment, RA to the selected action, and RT is the
terminal reward.

The step reward is assigned at constant intervals until the
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Fig. 3: Schematic overview of the policy architecture. First, the semantic image, converted into a single channel, and the depth map are downsampled. The resulting
images go through the Actor-Critic network, composed of three CNN layers and a linear Fully Connected (FC) layer. The Critic then outputs the Q-Value from two FC
layers, while the Actor feeds the high-level command to the controller. Policy optimization is performed with the PPO algorithm [20].

episode ends:

Rt :=

{
0 on episode termination
−0.2 otherwise

. (2)

The negative contribution to the total reward encourages the
policy to land as fast as possible.

The reward associated to semantics, RS , incites the agent
to fly on top of the classes that are considered safe for land-
ing, such as terrain, while penalizing flights on dangerous
areas, including roads and houses. Given the semantic mask
IS and the set of possible semantic classes S, this reward is
calculated as

RS :=
∑
s∈S

γs
count(IsS)

count(IS)
, (3)

where count(IsS) the number of pixels in IS associated to
class s, γs ∈ {−1, 1} is the weight associated to s, and
count(IS) the total number of pixels in IS . A negative
weight γs represents a penalty associated to flying over class
s ∈ S and leads to more exploratory actions, while a positive
value encourages the agent to start landing on top of s.

While the objective of this reward is to identify a suitable
landing spot, the collision reward RC deals with the problem
of obstacle avoidance. In this case, we model the UAV as a
sphere with radius r and this reward pushes the agent away
from obstacles:

RC :=

{
0 if dmin ≥ d∗

− 1
dmin−r if r < dmin < d∗

, (4)

where dmin is the distance to the closest obstacle and d∗ is
a threshold to check if the UAV is too close to an object,
with d∗ > r. When the robot is closer than d∗ to an obstacle,
the policy is rewarded negatively and, in case of a collision
(dmin ≤ r), the episode ends and the agent receives a
negative terminal reward RT .

The reward RA is associated to the action selected by
the policy. As our pipeline is built for emergency landing
and our objective is to reach the ground quickly, we reward
the descending movements, while slightly penalizing lateral
moves and halting the motion:

RA :=


−0.05 if lateral movement
−0.5 if halt motion
1 if descending movement

. (5)

At the end of each episode, we assign the terminal reward
RT . The episode terminates when the robot either lands
safely, collides against an obstacle or when the maximum
allowed time to land is reached. In case of a successful
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Fig. 4: Schematic overview of the simulation used for training the deep RL
policy. Given a 3D model and a camera pose, a Vulkan-based rendering engine
generates semantic and depth images that are fed to the agent. The policy
outputs high-level commands that are transformed into motor commands by a
low-level controller, and the UAV position is updated according to the dynamic
model for quadrotors introduced in [21]. At test time, the ground-truth semantic
and depth images are substituted by the output of the semantic segmentation
and depth-completion NNs from [18] and [17], respectively.

run, for example when landing on a safe area, such as flat
terrain or grass, we assign a positive terminal reward, while
in case of collisions, exhausted time budget or landing on a
hazardous area, the policy receives a penalty as follows:

RT :=


50 if landing on safe areas
−20 if landing on dangerous areas
−20 if in collision
−50 if maximum time reached

. (6)

C. Training Environment

Fig. 4 shows the pipeline used to train the deep RL policy.
We assume that the robot is equipped with a downward-
looking camera, and we render photorealistic RGB images,
semantic masks and depth maps using a custom pipeline
based on the Vulkan library1. The Vulkan API allows to
create a fast and lightweight rendering scheme that, given
a camera pose and a 3D model with associated textures,
generates semantics and depth information that is then fed
to the RL policy. The communication between the renderer
and the policy is established with TCP sockets, in order to
mimic the pipeline used in real-world experiments, where
semantic segmentation and depth completion are outsourced
to web computing resources. The high-level actions from the
policy are then fed to the low-level controller that, given
the current robot’s pose, generates motor commands. By
adopting the dynamic UAV model proposed in the Flightmare
framework [21] and assuming a fixed integration step, the
quadrotor flies to the target location. This cycle repeats until
the end of the episode.

Notice that, in order to have a stable training process,
ground-truth semantics and depth images are fed to the
agent, since the outputs from the semantic segmentation

1https://www.vulkan.org
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Fig. 5: Reward curve over the training steps. The proposed policy is depicted
in blue. In the initial phase of training, the sharp increase in the reward
demonstrates that the RL agent quickly learns the actions to land on safe areas.
In green, we show the training performance of the policy using binary images as
input, and in orange our policy with an additional memory module after the fully
connected layer.

and depth-completion NNs are subjected to a high level of
noise. The training performance of a policy when exposed
to stochastic inputs can degrade drastically, and it is a well-
known problem in RL. Only after the initial training phase,
we fine-tune our policy by exposing the agent to the complete
pipeline. In Sections IV-A and IV-B, the pipeline used for
fine-tuning and testing is described in more detail.

IV. EXPERIMENTS

A. Policy Training

We collect a series of static, photorealistic 3D models
generated from photogrammetry2, where the policy is trained
(Fig. 6). The UAV is equipped with a downward-looking
camera, and at each episode the robot is placed at a random
initial position and it is tasked to land safely on the ground.
All the scenes are characterized by the same semantic classes
(pavement/road, terrain, water, trees, buildings and cars).
We use common classes used by several state-of-the-art
semantic-segmentation algorithms, but our system can handle
any set of classes. Each semantic class is either considered
safe or unsafe to land on. During training, only terrain is
deemed safe, as landing on any other class might potentially
be dangerous. To have a faster and more stable training, the
process is parallelized by utilizing four drones at a time.
Each agent outputs actions at fixed time intervals (or steps),
communicates them to the robot’s controller and collects
the reward as feedback. The 3D model of the environment
changes at constant time intervals, allowing the policy to
experience different scenes and avoiding overfitting. In the
first episode of the training process, the policy is initialized
randomly. The training continues until the maximum number
of steps across all episodes is reached. To compute the total
reward as in (1), the weights are set to ωt = 1, ωS = 1,
ωC = 0.5 and ωA = 1, while d∗ and r are set to 3m and
0.5m, respectively. Fig. 5 reports the training performance
of the agent over 500 000 steps (blue curve), with a linearly
decaying learning rate. The policy is initially trained with
ground-truth inputs and shows a converging reward curve.
The agent is successively fine-tuned by exposing it to noisy

2https://sketchfab.com

inputs coming from semantic segmentation [18] and depth-
completion [17] NNs, where the sparse depth seeds are
obtained by sampling ground-truth depth images. This is
a necessary step to deal with the simulation-to-reality gap,
which is of extreme importance in robotic applications.
While mid-level representations can help to mitigate this
problem, most of the works in the literature feed only
ground-truth semantic masks and depth maps corrupted by
mild noise. In reality, the outputs from deep learning-based
methods can introduce severe noise and inconsistencies in
the pipeline, especially when NNs are exposed to inputs
that differ from the training data. These inconsistencies can
be potentially harmful for the policy, as RL is notoriously
sensitive to noise on the inputs and on the reward. By fine-
tuning the policy for 100 000 additional steps with a fixed
learning rate of 10−4, the policy is adjusted to improve its
performance when exposed to noisy data.

B. Tests in Previously Unseen Environments

A series of experiments in challenging scenes are con-
ducted to show the effectiveness of the proposed method.
We select 7 static models of real-life places not experienced
at training time, all created from photogrammetry (Fig. 7).
The test models are chosen to create hard challenges for the
pipeline (e.g. number of obstacles, small valid landing areas)
and present the same semantic classes experienced at training
time.

1) Test Set-Up: We select 15 initial positions in the scenes
and we report the number of successful landings, as well
as the time to land. We consider a run to be successful
if the drone lands without collisions on terrain and if the
landing does not exceed a maximum allowed time, set to
30 s. Timings provide insights about the efficiency of the
planning solution, as in emergency situations the objective
is to reach the ground as fast as possible, avoiding large
detours to find a suitable landing spot. The starting height
of the UAV is set between 20m and 30m. At test time,
we fix the weights of the NN modelling the policy and
we replace the ground-truth inputs with the outputs from
the semantic network [18] and the depth-completion method
[17]. The depth-completion network receives sparse depth
seeds by sampling ground-truth depth maps available from
the simulator.

We compare our approach against a naive baseline strat-
egy, the planner proposed by Mittal et al. [3] and the
commercially available solution by PX43. While the naive
solution lands the UAV by guiding it straight towards the
ground, [3] detects a safe landing spot processing the depth
images to find a flat area with the best characteristics in terms
of inclination, estimated depth uncertainty and expected
energy consumption to reach that position. Then, RRT* is
used to find a suitable path from the current UAV location
to the target checking for collisions in a 3D map.

Similarly, the commercial solution by PX4 detects suitable
landing spots using depth information. To decide whether a
location is a good candidate landing spot, normal vectors in

3https://github.com/PX4/PX4-Avoidance
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Fig. 6: Views of some of the 3D models experienced by the RL agent at training time. The models, extracted from urban scenes only, are characterized by the same
semantic classes (buildings, roads and pavements, terrain, cars and vegetation).

(a) Essex Castle. (b) Fraser Gunnery Range. (c) Hartley Mansion. (d) Tin Hau Temple.

(e) Warehouse. (f) Irchel. (g) Hofdi House.

Fig. 7: Views of the 3D models where the deep RL policy is tested. These models are not experienced by the agent at training time.

the area are estimated and the terrain gets classified as either
safe or dangerous. This planner then triggers the UAV’s
descent until an obstacle is sensed in its path. If the distance
to the obstacle is smaller than a threshold, the UAV flies in
an exploratory pattern until a suitable landing spot is found,
and then descends towards it. This cycle repeats until the
ground is reached.

Both path planners by [3] and PX4 assume accurate depth
measurements from an onboard stereo camera with a small,
fixed baseline. However, the decreasing stereo disparity with
increasing flight altitude renders this assumption unrealistic
in practice. Moreover, following the trend in Robotic Vision
literature, as in this work, replacing stereo depth estimation
with deep learning-based depth completion as a workaround,
can also result in highly noisy depth estimates, limiting the
applicability of these planners. Note that, while neither of
these planners consider semantic information in their original
forms, for fairness of comparison with our pipeline, we
extend them to use semantic masks alongside depth maps,
performing an additional binary classification of the landing
spots on top of their original pipelines, by considering the
class ‘terrain’ as the only safe area.

2) Results and Discussion: The success rates of the test
runs, as well as the average time to land, are reported in
Table I. The latter is computed by considering only the
successful runs. Notice that in the first column we show
the performance of the ’Baseline’, which refers to a naive
planner guiding the UAV to land immediately descending
straight to the ground. This is the fastest approach, but
exhibits the lowest success rates as it does not consider
the UAV’s surroundings. The proposed policy exhibits the
highest success rates and the best timings across almost
all cases, with the agent respecting both the safety and
the timing constraints, while landing the UAV on valid

Experiment Baseline Ours Mittal et al. [3] PX4

Essex Castle
Success Rate [%] 13.3 73.3 53.3 53.3
Average Time [s] 7.9 ± 2.1 9.7 ± 2.3 12.2 ± 3.9 13.8 ± 4.4

Fraser Gunnery Range
Success Rate [%] 6.7 86.7 40.0 20.0
Average Time [s] 10.8 ± 0.0 16.4 ± 5.9 17.0 ± 4.1 19.5 ± 2.5

Hartley Mansion
Success Rate [%] 6.7 80.0 60.0 53.3
Average Time [s] 11.5 ± 0.0 10.5 ± 2.1 15.9 ± 2.7 18.5 ± 1.9

Tin Hau Temple
Success Rate [%] 6.7 86.7 26.7 13.3
Average Time [s] 10.0 ± 0.0 10.6 ± 0.7 17.8 ± 7.1 15.9 ± 0.9

Warehouse
Success Rate [%] 20.0 93.3 26.7 86.7
Average Time [s] 11.2 ± 1.0 14.3 ± 3.1 14.2 ± 2.4 19.9 ± 1.8

Irchel
Success Rate [%] 0.0 93.3 73.3 40.0
Average Time [s] N.A. 12.9 ± 1.3 18.2 ± 3.9 22.4 ± 2.5

Hofdi House
Success Rate [%] 0.0 100.0 60.0 80.0
Average Time [s] N.A. 8.1 ± 2.3 13.8 ± 4.2 17.1 ± 5.3

TABLE I: Results of the experiments in the 7 simulated scenes. We report the
success rate over 15 runs, as well as the average time to land. The averages
of the timings are computed considering only the successful landings. The best
performance in each scene is shown in bold, without considering the results of
the baseline planner.

locations and avoiding collisions. Thanks to the use of
full semantic masks, the RL agent learns to leverage the
spatial relationships between the semantic classes during
training, and thus the policy identifies safe landing spots
quickly and effectively, avoiding extensive exploration of the
surroundings. On the contrary, the effectiveness of the other
planners to land the UAV safely and without crashes seems
to be limited due to the noisy input, often guiding the UAV to
fly over large detours. In particular, terrain information, such



Experiment Ours Ours + Memory Binary

Essex Castle 73.3 26.7 60.0
Fraser Gunnery Range 86.7 6.7 33.3
Hartley Mansion 80.0 0.0 46.7
Tin Hau Temple 86.7 6.7 46.7
Warehouse 93.3 13.3 80.0
Irchel 93.3 0.0 66.7
Hofdi House 100.0 0.0 66.7

TABLE II: Success rates (in %) on the test models for the ablation study
comparing our architecture with a more complex policy with a memory module
(Ours + Memory ) and against a policy using depth maps and binary semantic
masks as inputs (Binary ). The best results are shown in bold.

as its flatness or inclination that are extracted from the depth
maps generated using depth completion are noisy, rendering
the identification of valid landing spots in these methods
difficult. In fact, PX4 collides against obstacles, while [3]
generates long, intertwined paths.

C. Ablation Study

To further analyze our pipeline, we run ablation studies
on the policy architecture and type of input to the agent.
We compare our approach against two variants; the Ours +
Memory policy with an additional Long Short-Term Memory
(LSTM) component with 256 cells before the Actor-Critic
module (similarly to [6]), and a Binary policy with the same
architecture as in Fig. 3, but trained with depth images and
binary semantic masks, where the only valid landing area is
‘terrain’. The training performances of all variants are shown
in Fig. 5, and the success rates in the test models are reported
in Table II. Extending the policy with the memory module
exhibits the worst performances at both training and testing
time, with no successful runs in 3 out of 7 test models. While
LSTMs could be beneficial in dynamic scenes [6], they
require more time to train, leading to lower rewards. Instead,
the Binary policy converges faster, but to a lower average
reward than our policy. This is reflected in the performances
during testing, since our method achieves the highest success
rates, demonstrating the benefit of using the full semantic
masks over binary inputs.

D. Real-world Experiments

We test the proposed pipeline in a series of real-world
experiments, where semantic segmentation and the depth-
completion NN are outsourced to cloud-based computing
resources (Amazon AWS). However, notice that the modular
design of the pipeline allows to replace the cloud with a
GPU carried onboard the UAV. We directly deploy the policy
trained exclusively in simulation without any additional fine-
tuning, demonstrating that the use of depth and semantic
images as input to the RL agent can fill the simulation-to-
reality gap.

1) System Set-up: The UAV used in the experiments is
a Holybro X500, equipped with an Intel NUC with an Intel
Core i5-1145G7 CPU and a 4G modem stick to communicate
with the cloud resources. We use the Pixhawk autopilot4 as
a low-level controller, while state estimation is performed

4https://pixhawk.org

Image Type Latency [s] Bandwidth [MB/s]

Depth 3.03 ± 1.21 3.18 ± 0.13
Semantics 1.34 ± 0.47 0.27 ± 0.03

TABLE III: Latency and bandwidth consumption statistics for the communication
between the cloud and the UAV’s onboard computer in a real-world experiment.

(a) Visual Image. (b) Semantic Mask.

Fig. 8: One example image and its corresponding semantic mask during a real-
world experiment captured by the downward-looking camera. The light green
areas correspond to grass and terrain, and are the only valid landing areas.

by fusing RTK GPS estimates with inertial measurements.
RGB images are captured with a down-looking global-
shutter camera and are successively sent to the cloud via
TCP connections to extract depth and semantic information.
Alongside color images, the depth-completion NN receives
sparse depth seeds in the form of 3D landmarks estimated
by ORB-SLAM3 [22] running onboard the drone. Once
semantic and depth information is received from the cloud,
it gets fed into the RL agent, which communicates high-
level commands to the UAV’s controller. The experiments are
carried out in an urban area. The UAV starts at an altitude
of 25m off the ground over a street, and it is tasked to
land on grass, avoiding collisions with the nearby buildings
and vegetation. We consider a run to be successful if the
drone lands without interventions from the safety pilot. In
Table III we report the latency from sending RGB images to
the cloud and receiving depth and semantic information back,
as well as the bandwidth consumption for communication.
Once the policy receives these inputs, it takes an additional
0.40± 0.07ms to output the high-level control commands.

2) Results and Discussion: Our policy, even if it was
trained only in simulation, is the only approach able to land
the UAV safely. In contrast, the planners by [3] and PX4 can-
not cope with the noisy inputs from real-world data (Fig. 8).
In particular, due to high noise in the depth, the former fails
to find a suitable landing position, guiding the UAV to hover
over the initial position. Even when a suitable landing spot
is found, the path generated is extremely convoluted because
of the presence of artifacts in the 3D map used for obstacle
avoidance. Similarly, PX4 starts the landing procedure, but,
as soon as an obstacle is sensed, it flies the UAV in dangerous
detours that force the safety pilot to take over to avoid crashes
into the nearby buildings. As in simulation, also in the real
experiments, the power of semantics to identify safe landing
spots as advocated by the pipeline, is emphasized. Moreover,
our policy does not build a full 3D reconstruction of the
environment, but instead reacts to potential collisions in a
receding horizon fashion, allowing the robot to safely land
on grass (Fig. 9).

During testing, we experience some failure cases also with
our policy. In one run, semantic misclassification causes the

https://pixhawk.org


(a) External Camera Frame. (b) 3D View. (c) Top View.

Fig. 9: View of the environment and examples of trajectories flown by the UAV during successful real-world experiments when guided by our policy. In (a) the drone
is highlighted with a red circle. The paths are shown in the 3D reconstruction of the real place where experiments are carried out. The initial position is shown as a
colored blob, while the landing spot as a star.

UAV to fly towards bushes, wrongly labeled as grass, while
in another case, the UAV almost crashes into a lamppost as
this is not present as an obstacle in the depth map. While
the object is correctly identified in the semantic image, ORB-
SLAM3 does not detect any 3D landmarks on the lamppost
because of its featureless visual appearance. Consequently,
no sparse seeds are generated and the obstacle is missing in
the depth image. Then the policy tries to land unaware of the
presence of the obstacle. These experiments show that our
pipeline can deal with noisy inputs, but it is still prone to
failures in case of systematic errors, especially in semantics.

V. CONCLUSION AND FUTURE WORK

In this work, we present a pipeline based on deep RL
for autonomous landing of multicopter UAVs in case of an
emergency. Our policy maps semantic and depth information
onto actions, flying the UAV towards safe areas. We evaluate
our system in a series of challenging experiments, both
in simulation and reality, demonstrating that we can reach
higher success rates and faster landings compared to the
state of the art, including a commercially available solution.
Moreover, we show that the use of multi-class semantic
segmentation is beneficial compared to binary approaches,
as it allows the UAV to acquire more context, learning
the spatial relationships between the different classes of the
scene. In our experiments, using the full semantic knowledge
leads to success rates on average 150% higher than cases
when binary segmentation is employed. More importantly,
our policy transfers directly from simulation to reality, and
we demonstrate it can safely land a drone in real-world
experiments even when exposed to inputs corrupted by noise.

As future work, we propose to extend the pipeline to
consider the uncertainty in semantic classification and in
depth prediction to increase robustness against noise, and
to further develop the pipeline to work in dynamic scenes.
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