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Abstract— Sampling-based motion planners are widely used
in robotics due to their simplicity, flexibility and computational
efficiency. However, in their most basic form, these algorithms
operate under the assumption of static scenes and lack the
ability to avoid collisions with dynamic (i.e. moving) obstacles.
This raises safety concerns, limiting the range of possible
applications of mobile robots in the real world. Motivated by
these challenges, in this work we present Temporal-PRM, a
novel sampling-based path-planning algorithm that performs
obstacle avoidance in dynamic environments. The proposed
approach extends the original Probabilistic Roadmap (PRM)
with the notion of time, generating an augmented graph-like
structure that can be efficiently queried using a time-aware
variant of the A* search algorithm, also introduced in this
paper. Our design maintains all the properties of PRM, such
as the ability to perform multiple queries and to find smooth
paths, while circumventing its downside by enabling collision
avoidance in highly dynamic scenes with a minor increase in the
computational cost. Through a series of challenging experiments
in highly cluttered and dynamic environments, we demonstrate
that the proposed path planner outperforms other state-of-
the-art sampling-based solvers. Moreover, we show that our
algorithm can run onboard a flying robot, performing obstacle
avoidance in real time.

I. INTRODUCTION

Collision-free motion planning is a challenging, yet es-
sential requirement for any robotic system that is conceived
to operate autonomously. With robots becoming ubiquitous
outside the traditionally controlled industrial environments
and the emergence of new fields, such as unmanned driving
or intelligent logistics, research in path-planning strategies
dealing with more complex, potentially dynamic scenarios
has gained increasing interest in recent years. Especially, as
mobile robots start to share their workspace with humans,
the development of algorithms able to plan safe trajectories
efficiently, while accounting for multiple moving obstacles
is, in fact, of utmost importance.

The path-planning problem has historically been addressed
in the literature from various perspectives, ranging from
optimization- to sampling-based approaches. In contrast to
the former, which require precise modelling of the robotic
platform and its workspace to maintain the optimality guar-
antees, the latter can work in the robot’s configuration space
without an explicit representation of the environmental con-
straints. This characteristic makes sampling-based methods
very efficient, flexible and particularly capable of dealing
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Video — https://youtu.be/Eh6brn_dvlU
Code — https://github.com/VIS4ROB-1lab/t_prm

Fig. 1. Experiment with two UAVs flying in the same workspace. T-PRM
successfully navigates one UAV to its destination, avoiding collision with
the second, moving UAV, modeled as a spherical obstacle and highlighted
with a red ellipse in the image. Our algorithm performs re-planning online,
continuously adjusting the first UAV’s trajectory to the newly estimated
velocity of the obstacle.

with high dimensional settings, even in environments con-
taining a large number of obstacles. Among this class of
path planners, the two most influential algorithms to date
are the Probabilistic Roadmap (PRM) approach [1] and the
Rapidly-exploring Random Tree (RRT) method [2]. While
RRT-based approaches employ incremental sampling and
search schemes, PRM and its variants rely on substantial
pre-computation on the given environment, allowing for
extremely fast, multiple planning queries. The need for
information to avoid collisions during the pre-processing
stage, however, typically makes PRM-based algorithms less
suitable for deployment in dynamic scenarios. Even though a
few works have aimed at tackling this issue in the past, these
have, so far, resulted in methods that only support single-
query execution modes [3] or require additional sampling
and collision checking during the query phase, slowing down
the path search process [4].

In this paper, we present a novel and efficient multi-
query approach to path planning that takes both static and
dynamic obstacles into consideration. Coined as Temporal
PRM, or T-PRM in short, our method extends the standard
PRM formulation by incorporating the time intervals during
which each node of the roadmap is not in collision with
a dynamic obstacle. In addition, we introduce a variant of
the A* search algorithm that considers these nodes’ time
availability and respects the time monotonicity constraint
along the solution path. This allows for fast and efficient
queries and removes the need for performing further sam-
pling or rebuilding the graph, even in the presence of moving
obstacles. The proposed approach is thoroughly evaluated
in a simulated environment containing multiple static and
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dynamic obstacles, showing its ability to produce safer and
more efficient paths than other state-of-the-art sampling-
based planners, especially when dealing with highly dynamic
settings. Furthermore, we demonstrate that our algorithm can
be successfully deployed on an Unmanned Aerial Vehicle
(UAV) to perform real-time obstacle avoidance in a series of
challenging experiments.
In short, the main contributions of this work are:

o T-PRM, a novel and efficient algorithm for real-time
obstacle avoidance in static and dynamic environments,

e an improved variant of A*, able to solve queries in
graphs augmented with the time dimension,

¢ an extensive evaluation of the proposed method, both
in simulation and in real-world experiments, and

« the source code of the proposed algorithm.

II. RELATED WORK

Sampling-based motion planning is one of the most stud-
ied research topic in robotics [5], [6]. This class of motion
planners is generally preferred to more complex algorithms,
such as optimization-based solutions [7], [8], which require
precise modelling of the problem, as well as the computation
of complex constrained cost functions. Instead, sampling-
based approaches are computationally more efficient. Al-
though many different planners have been proposed over
the years, the most important milestones in the field are
Probabilistic Roadmaps (PRMs) [1] and Rapidly exploring
Random Trees (RRTs) [2]. Both methods can solve high-
dimensional planning problems and are able to generate
collision-free paths from a start to a goal configuration, but
they tackle the planning problem differently. RRTs iteratively
build a tree rooted at the start configuration, growing it
towards the goal by connecting randomly sampled states.
On the other hand, PRMs divide the process into two
separate phases. First, a roadmap is generated by wiring
randomly sampled configurations to a graph, which is then
queried to find a path from start to goal. The success
of the aforementioned algorithms in dealing with complex
environments and configuration spaces has lead to powerful
variants based on both methods appearing in the literature.
Within the paradigm of RRT-based approaches, RRT* [9],
an asymptotically optimal version of RRT, together with
its variants [10], [11] are widely used planners. Recently,
extensions with deep reinforcement learning have been pro-
posed, such as [12], where Q-Learning is used to guide the
sampling process when expanding the tree. However, these
approaches require expensive training and lack generaliz-
ability, as they target specific environment layouts. Whereas
all these RRT-based algorithms assume a static environment,
limiting their applicability in dynamic scenarios, there exist
more advanced approaches specifically designed to plan in
dynamic environments. RRTx [13] refines and repairs the
same tree over the entire duration of navigation, while RRT*-
FND [14] improves RRT*, making it usable for fast online
re-planning when a moving obstacle blocks the path. Instead,
Fisher et al. [15] use a combination of reachability maps and
RRT-connect, while Ma’ Arif et al. [16] use artificial potential

fields to be reactive to dynamic obstacles. As in the case of
RRTs, numerous methods following the PRM paradigm have
also been proposed, targeting specific flaws of the original
algorithm. In particular, PRM’s most relevant limitations are
the inability to find paths through narrow gaps, as well as to
plan safe paths in dynamic environments. While there exist
valid approaches that target the so-called narrow gap prob-
lem [17], performing dynamic obstacle avoidance with PRMs
still remains an open research question. Lazy Toggle PRM
[3] performs fewer collision checks, but it loses the multi-
query property of PRMs. You et al. [4] propose to modify the
positions of the nodes in the roadmap using potential fields
to accommodate the changes in the environment caused by
dynamic obstacles. However, this implies the necessity of
additional collision checks when querying the graph, slowing
down the algorithm. Instead, [18] proposes a method that can
plan safe trajectories avoiding moving obstacles in human-
robot collaborative environments; nonetheless, it loses all
multi-query properties. To avoid these shortcomings, [19] use
supervised learning to identify safe areas in dynamic scenes,
reducing the search space and increasing the roadmap’s cov-
erage. However, this approach requires training data specific
for the environments where the planner is deployed. Instead,
similarly to our method, the planner by Phillips et al. [20]
is able to navigate robots in dynamic scenes by introducing
the notion of safe time intervals. However, their approach
cannot re-plan in real time and does not scale well to large
environments.

Motivated by these challenges, in this work we propose a
PRM-based algorithm, dubbed T-PRM, able to generate safe
paths avoiding collisions with both static and dynamic obsta-
cles. In a nutshell, we propose to extend the idea of roadmaps
with the notion of time, in order to be reactive in changing
environments. Even though this implies substantial changes
to the original algorithm, the proposed strategy maintains
all the properties of PRMs, while adding dynamic obstacle
avoidance capabilities. Our approach generates smoother and
safer paths than other state-of-the-art planners, and it can be
used on embedded platforms to perform path planning in
real-time.

III. METHODOLOGY

Our objective is to generate a safe path from a starting
location to a given destination, avoiding collisions with
both static and moving obstacles. We tackle this problem
using a novel adaptation of Probabilistic Roadmaps, firstly
introduced by Kavraki et al. [1] for static environments,
which we modify in order to account for the presence of
dynamic obstacles in the workspace.

The core novelty lays in the extension of the origi-
nal PRM algorithm to consider the time dimension when
building and querying roadmaps, allowing us to perform
dynamic obstacle avoidance. Our version, Temporal PRM or
T-PRM, is developed for holonomic robots moving in an n-
dimensional space R", where both static and moving objects
are encountered. For simplicity, we only treat first-order
dynamics of the robots, which are modeled as points with no



physical extension. To ensure safety, we inflate obstacles by
a safety margin, which is representative of the robot’s dimen-
sions. Moreover, in general, we assume that the obstacles’
positions and velocities are known and time-invariant, i.e.
constant, when building and querying roadmaps. However,
we demonstrate that our approach, thanks to its efficiency,
can also handle scenarios where obstacles change velocities
and direction of travel unexpectedly.

In the following, we recap the main concepts of PRMs,
and detail the proposed approach.

A. Preliminaries: Probabilistic Roadmaps

A roadmap is a data structure in the form of an undirected
graph G = (V,E) that consists of a set of nodes V
connected by edges E. The graph G is firstly built in
the free configuration space of the robot, where each node
v € V represents a robot’s configuration and edges e =
(v,w) € E with v,w € V are feasible paths connecting
different configurations. The PRM algorithm initially builds
G (learning phase), and then queries it (query phase) in order
to find the shortest and collision-free path between the start
and goal configurations. During the learning phase, nodes are
sampled randomly in the robot’s free configuration space, i.e.
not inside static obstacles. When a new node v is sampled,
it is connected to the graph G if it is possible to generate a
local path from v to the neighboring nodes already in G. A
local planner is used to find a feasible path between node
pairs and, when the search is successful, the resulting edge is
added to E. This phase continues until the given time budget
is exhausted or when the maximum number of samples is
reached. In the query phase, the graph G is used to find
paths between configurations. Since the original formulation
of PRMs considers only static scenes, the graph is built only
once. Therefore, the same underlying structure can be re-
used for multiple queries without additional sampling.

B. Temporal Probabilistic Roadmaps

Since PRMs assume environments to be static, the algo-
rithm cannot be utilized to perform obstacle avoidance in
dynamic scenes. In our formulation, we propose to incorpo-
rate the notion of time in the graph G, while keeping the
learning and query phases separate, similarly to PRMs, and
to differentiate static from moving obstacles.

1) Learning Phase: In order to build the graph GG, samples
are generated uniformly in the space. A candidate sample is
considered valid if it does not lay in a static obstacle. While
many sampling strategies are proposed in the literature [21],
[22], these methods place a lower number of samples in wide
open spaces. However, this can potentially be problematic in
dynamic environments. As shown in Fig. 2] if a moving ob-
stacle blocks a node without close-by neighbors, the majority
of the map becomes restricted. By sampling uniformly the
space at random, this problem can be circumvented at the
expense of higher number of samples. Despite its simplicity,
this sampling strategy is proven to work effectively in
practice. Assuming the robot is holonomic, edges are then
created connecting node pairs by means of a simple local

Algorithm 1: Learning Phase

Input: Obstacles Information, Max Number of
Nodes.
Output: G = (V, E) with TA” Vv € V.
1 while not all nodes sampled do
Sample v in free space (outside static obstacles).
Compute T'A" for node v.
Add node v to V.
Generate edge e from v to its neighbors.
if e is valid then
L Add e to E.

N N R W N

8 Return G = (V, E).

planner that creates straight-line paths. If the connection does
not exceed a maximum length and is feasible, i.e. not in
collision with static obstacles, the newly built edge is added
to E.

In order to accommodate also for the presence of moving
objects, we introduce the concept of time availability of the
nodes, T'A in short. This encodes the time intervals, during
which a given node is free (or available) and not in collision
with a dynamic obstacle. Note that we do not assign T'A to
edges as a design choice. Since they have a length lower than
the obstacles’ dimensions, we argue that checking nodes is
sufficient to find a safe path. However, our approach could be
easily extended to check for collisions along edges as well.
Formally, T'A” of node v € V is the set of continuous closed
time intervals, during which node v is available, considering
the set of N moving obstacles O := {05}, in the scene.
This can be computed as

TA" = () TAL, )
e

where T'A? is the time availability for node v given obstacle
o, i.e. when v is not blocked by o. The intersection operator
in implies that a node is available at a given time when
no dynamic obstacle obstructs it. Since we assume obstacles
have a known constant velocity, T'AV for all nodes v € V
are directly computed when the graph G is constructed. This
design choice is beneficial in case of multiple queries of G, as
collisions against dynamic obstacles are checked only during
the building phase. Computing the time availability of nodes
when querying the graph makes the process slow, as the
information about obstacles needs to be propagated through
the structure multiple times. This would contradict the nature
of PRMs, as they are specifically built to answer multiple
queries efficiently. Notice that, since G is an undirected
graph, time monotonicity is not directly encoded in the graph,
but it is enforced during the query phase. The learning phase
is summarized in Alg. [T}

2) Query Phase: During the query phase (Alg. 2), A*
is used to find the shortest paths in the graph G between
pairs of start and goal nodes, indicated with s and g,
respectively. Every edge e € E is assigned a cost equal to
its length, as well as an approximate total time to traverse
it, which is computed assuming a holonomic robot with



Algorithm 2: Query Phase

Input: Graph G, start node s, goal node g
Output: Path from s — g with timings
1 Find closest node s and g in G for s and g,
respectively.
2 Find path 5§ — g using Alg.
3 Concatenate the paths s — 5, § - n, n — n.
4 Return complete path s — g.

Algorithm 3: A* variant. The Open Queue is sorted
using the f-Cost, given by the Cost-to-go plus the
heuristic score per node. The term active indicates
that a node is not in collision at a given time.

Input: Graph G with T'AY Vv € V, start node s,
goal node g, heuristic function h.

Output: Shortest path s — g with timings.

1 // Initialization of containers to empty lists

2 Open Queue, Closed List, Predecessors, Arrival

Time, f-Cost, Cost-to-go < []

3 Push s to Open Queue

4 Arrival time[s] < 0

5 Cost-to-go[s] < 0

6 f-Cost[s] < h(s)

7 // Check T As:

8 if s is not active at 0 then

9 | return {} / Return empty path

10 while Open Queue is not empty do

1 v 4 pop from Open Queue

12 t, < Arrival Time[v]

13 if v = g then

14 | break

15 Add v to Closed List

16 for each outgoing edge e from v do

17 w < end node of e

18 /I Check T AY:

19 if w is active at t,, + duration(e) then

20 Tentative Cost-to-go < Cost-to-go[v] +
cost(e)

21 if w in Open Queue and Tentative
Cost-to-go > Cost-to-go[w] then

22 L continue

23 if w is not in Closed List then

24 Predecessors[w] + v

25 Arrival Time[w] < t, + duration(e)

26 Cost-to-go[w] < Tentative Cost-to-go

27 f-Cost[w] < Tentative Cost-to-go +

h(w)
28 if w not in Open Queue then
29 L Push w to Open Queue

30 Back-trace path s — ¢ using Predecessors and
Arrival Times

constant velocity. However, since time availability of nodes

(a) Random sampling of
nodes biased towards free
space. Fewer nodes are placed
in-between the walls. The
invalid node and edges (in
red) split the graph into two
separate parts.

Fig. 2. Benefit of our sampling strategy. In (a), the red node is currently
blocked by a dynamic obstacle and the corresponding edges (in red) are
invalid, splitting the graph in two. In dynamic environments, a uniform
random sampling strategy (b) is beneficial, as it allows to have redundant
connections in case one node is blocked.

(b) Uniform random sampling
strategy. Despite that the cen-
tral node is blocked, the graph
remains connected.

is represented with a set of continuous time intervals, the
standard formulation of A* cannot be used because it does
not keep track of the timings along the path. Therefore,
we propose a novel version of the A* algorithm, reported
in Alg. 3] that works with continuous time intervals and
that respects the constraint of time monotonicity along the
solution path. The standard version of A* can be utilized
if time, instead of continuous, is discretized, e.g. into 7T’
steps. In this case, a series of new graphs {G;}_, can be
constructed from G for each time step ¢ by replacing each
undirected edge with two directed ones. However, while a
solution for every step ¢ can be found, the graph size is
increased and the overall performance of the algorithm is
negatively affected. Moreover, this effect is exacerbated with
higher time resolutions. In our variant of A*, we start at
node s at time ¢ = 0. We then march along the undirected
edges, and we track for each node the arrival time, as well as
its predecessor along the path. This bookkeeping allows to
respect the time monotonicity constraint. By using the arrival
times and time availability T'A” for each node v, we avoid
reaching a node when it is blocked by a dynamic obstacle.

We give an example of the process in Fig. 3| As a heuristic
cost for A*, we use the Euclidean distance to the goal node,

h(v) = [lv—gll,- )
Another benefit of our A* variant is that the output path
already incorporates timings. This implies that no path re-
parametrization has to be performed after its computation.
Furthermore, since T-PRM inherits from PRM, it maintains
the property of probabilistic completeness. In fact, the only
consequence of the incorporation of time into the graph is a
more expensive search of a solution path in the roadmap.

C. Multiple Queries and Re-planning

The original formulation of PRM can solve multiple
queries in static environments, as the graph built in the learn-
ing phase can be reused without additional computations.
Thanks to the assumption of known obstacles’ velocities,
T-PRM maintains this property also in dynamic scenes,
as the movements of obstacles are already incorporated in
the roadmap. In case this assumption is not respected, our
algorithm can be adapted to perform re-planning at fixed rate
by recomputing the time availability of nodes. This allows



(b) Case of a dynamic obstacle

(a) Case without dynamic obsta-

cles. blocking some nodes (red) at dif-
ferent times.
Fig. 3. Examples of paths found by T-PRM highlighted in blue from

start (blue) to goal (green) in static (a) and dynamic (b) scenes. When an
obstacles moves in the workspace as in (b), T-PRM generates a timed path,
which avoids collisions. In (b) each node is labeled with the robot’s arrival
time (black), assuming that all the edges take 1s to traverse.

to keep the same underlying graph structure, at the expenses
of minor computation overheads.

D. Complexity Analysis

Here we analyse the complexity of the T-PRM algorithm
using the big-O notation by checking the complexities of the
learning and query phases separately.

In the learning step, we compute the time availability of
each node and create edges connecting node pairs. Assuming
the sets of sampled nodes V and of moving obstacles
O are given, at most |O] + 1 time intervals have to be
computed. This happens when every obstacle covers the
node at a different interval, and implies that the complexity
of computing the time availability of each node v € V
is O(JV] - |OJ). In the second stage, we compute edges
in O(|V|?) using a brute-force approach by checking all
possible node pairs. Overall, the complexity of the learning
phase is O(|V|> + |V| - |O|)). However, from a practical
perspective, the number of moving obstacles |O| is generally
magnitudes smaller than the number of nodes, that is |O] <
|[V|. This implies that the complexity when building the
roadmap G is dominated by the wiring process.

The complexity of the query phase coincides with the
complexity of our A* variant. While the standard formulation
of A* is in the order of O(|V|log|V|+|E|) [9], our version
has worse complexity, since it needs to check the time
availability of nodes. In the worst case scenario, where a
node is blocked by all moving obstacle at different times,
this leads to |O|+1 time intervals. These intervals, if sorted,
can be searched in O(log|O|), using e.g. binary search.
This implies that the query phase has a total complexity of
O(log |0 - ([V[log [V + | E)).

In case of re-planning, recomputing the time availability
of all the node has complexity O(|V] - |O|), as described
above.

IV. EXPERIMENTS

We conduct a series of challenging experiments both in
simulation and in the real world, and we compare our
approach against our implementation of RRT*-FND [14]
and the RRT* and PRM solvers from the Open Motion
Planning Library (OMPL) [23]. We compare the computation
times of the different algorithms, as well as the lengths
of the generated paths in environments cluttered with a

TABLE I
PERFORMANCES OF T-PRM AND COMPETITORS AVERAGED OVER 100
RUNS WITH VARYING NUMBER OF STATIC OBSTACLES IN 2D. THE BEST
RESULTS ARE HIGHLIGHTED IN BOLD.

Planner # Obstacles  Path Length [m] Computation Time [ms]
T-PRM 0 14.69 + 0.16 499 + 1.22
OMPL PRM 0 15.34 £ 0.74 278 £+ 1.49
OMPL RRT* 0 16.60 + 0.85 0.99 + 0.69
RRT*-FND 0 17.76 + 1.16 4.32 + 0.06
T-PRM 5 14.68 + 0.18 4.19 + 091
OMPL PRM 5 1527 + 0.78 2.76 £+ 1.31
OMPL RRT* 5 16.44 + 0.79 1.01 £ 0.61
RRT*-FND 5 17.82 + 1.28 428 + 0.10
T-PRM 10 14.96 + 0.19 5.23 + 1.01
OMPL PRM 10 15.32 + 0.89 277 £ 1.19
OMPL RRT* 10 16.54 + 0.79 0.96 + 0.52
RRT*-FND 10 18.56 + 1.30 4.09 + 0.14
T-PRM 15 15.04 £+ 0.28 5.66 + 1.03
OMPL PRM 15 15.22 £+ 0.61 2.84 +£ 191
OMPL RRT* 15 16.57 + 0.86 0.97 + 0.63
RRT*-FND 15 17.97 + 1.26 379 £ 0.21
T-PRM 20 15.30 £+ 0.58 6.27 £+ 0.68
OMPL PRM 20 15.29 + 0.69 296 + 1.72
OMPL RRT* 20 16.74 £+ 0.96 0.94 + 0.56
RRT*-FND 20 18.60 + 1.30 3.69 £+ 0.24

high number of simulated static and moving obstacles. The
experiments demonstrate that T-PRM can find safer and
more efficient paths than the competitors, even in highly
dynamic environments, as shown in the accompanying video.
Finally, by conducting a series of real-world experiments
with an Unmanned Aerial Vehicle (UAV), we demonstrate
that T-PRM can be deployed in reality to perform obstacle
avoidance in real time.

A. Experiments in Simulation

We task the planners to find a path from a starting location
to a desired destination, and we conduct the experiments
both in 2D and in 3D in environments filled with static and
moving obstacles. The test areas have sizes 10m x 10m
and 10m x 10m x 10m, respectively. The final path has
to connect one corner of the testing area to the diagonally
opposite one (as shown in Fig. [}, while avoiding collisions.
The algorithms are implemented in C++, and experiments
and benchmarks are run using an Intel Core i7-4790 with 8
cores and 16GB of RAM.

1) Static Environments: In Tables [] and [[f we report
the results of the experiments in 2D and 3D, respectively,
averaged over 100 runs, with different numbers of static
obstacles randomly placed in the scene. In the learning
phase of T-PRM, we set the maximum number of nodes
to 800 in 2D and 1300 in 3D. The computation times of
the different algorithms correspond to the time required to
find a valid collision-free path. To have a fair comparison of
the computation times of the different algorithms, we stop
planning when the first valid solution is found.

While the overall runtimes of the different planners are
not affected by the number of obstacles, it is noticeable
how T-PRM and PRM generate overall smoother and shorter
paths compared to RRT*-FND and RRT*. Fig. shows
a qualitative comparison of the trajectories found by the
different solvers in the 2D case with 20 obstacles. However,
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—— OMPL PRM

OMPL RRT*
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(a) Planning with 20 static obstacles
randomly placed in the space.

(b) Narrow gap with 1000 T-PRM
nodes. T-PRM is not able to find a path.

—— RRT*-FND
—— T-PRM

—e— OMPL PRM
OMPL RRT*

—— RRT*FND
—— OMPL PRM
OMPL RRT*

(c) Same narrow gap as in (b) with
5000 T-PRM nodes. T-PRM is able to
find a path.

Fig. 4. Paths generated by the different algorithms in a 2D square from bottom left to top right, where the intermediate dots represent the sampled nodes
of the underlying data structure. (b) and (c) show the performance of T-PRM with a different number of samples in the presence of a narrow gap.

TABLE II
PERFORMANCES OF T-PRM AND COMPETITORS AVERAGED OVER 100
RUNS WITH VARYING NUMBER OF STATIC OBSTACLES IN 3D. THE BEST
RESULTS ARE HIGHLIGHTED IN BOLD.

Planner # Obstacles  Path Length [m] Computation Time [ms]
T-PRM 0 18.58 + 0.32 12.92 + 6.06
OMPL PRM 0 19.94 + 1.30 6.08 £+ 4.72
OMPL RRT* 0 22.13 £+ 1.80 1.68 + 0.93
RRT*-FND 0 24.83 £+ 2.37 30.38 £+ 1.35
T-PRM 5 18.55 + 0.28 12.71 4+ 4.97
OMPL PRM 5 20.19 £+ 1.63 6.07 £+ 4.03
OMPL RRT* 5 22.04 £ 1.78 1.55 £+ 0.63
RRT*-FND 5 24.96 £+ 2.78 29.88 + 1.62
T-PRM 10 18.55 + 0.30 12.48 + 5.46
OMPL PRM 10 20.62 £+ 2.01 6.81 £+ 4.57
OMPL RRT* 10 2223 £+ 1.84 1.59 £ 0.66
RRT*-FND 10 2548 £ 2.71 29.39 £ 0.95
T-PRM 15 18.69 + 0.31 15.73 + 7.67
OMPL PRM 15 20.79 £+ 1.60 6.36 £+ 5.16
OMPL RRT* 15 22.18 £ 1.70 1.76 + 1.04
RRT*-FND 15 2478 £+ 2.27 28.73 £ 1.00
T-PRM 20 18.59 + 0.29 12.95 + 5.15
OMPL PRM 20 20.66 + 1.77 6.72 £+ 4.59
OMPL RRT* 20 21.94 £+ 1.86 1.61 + 0.80
RRT*-FND 20 25.07 £ 2.19 29.22 + 2.00

while T-PRM finds the shortest paths in most cases, RRT*
has the lowest computation times. This is expected, as RRT*
specifically targets path planning in static scenes, while
the proposed T-PRM planner is designed to also perform
dynamic obstacle avoidance.

Notice that we limit the maximum number of static obsta-
cles to 20. This is motivated by the known inability of PRM
to find a valid path when the only possible connection goes
through a narrow gap [21]. While T-PRM shows promising
performances in relatively open spaces, it suffers from the
same limitation. This can be directly related to the uniform
sampling strategy. By increasing the maximum number of
allowed samples, this problem is overcome at the expense of
higher computation times. In Fig. ()] we set the maximum
number of nodes to 1000. In this case, the competitor
planners manage to find a path, whereas T-PRM fails. This
is to be expected, since the PRM implementation in OMPL
is heavily optimized. If the number of nodes is increased to
5000, T-PRM is also able to find a solution (Fig. f(c)), but
in this case the computation time goes up to 200 ms. Notice

TABLE 111
PERFORMANCE OF THE DIFFERENT ALGORITHMS AVERAGED OVER 100
RUNS IN DYNAMIC SCENES WITH UP TO 1000 OBSTACLES MOVING
RANDOMLY IN 3D. RRT*-FND AND THE OMPL PLANNERS RE-PLAN IF
THEIR PATHS ARE IN COLLISION WITH AN OBSTACLE. THE BEST
RESULTS ARE HIGHLIGHTED IN BOLD.

Planner # Obstacles  Path Length [m] Computation Time [ms]  Success Rate [%]
T-PRM 50 18.51 + 0.26 1239 + 4.42 99
OMPL PRM 50 21.19 £ 2.44 20.96 £ 16.25 100
OMPL RRT* 50 22.11 £ 1.65 3.30 + 1.69 99
RRT*-FND 50 29.51 £ 4.86 87.78 £ 20.11 98
T-PRM 100 18.55 + 0.26 13.14 £ 4.69 99
OMPL PRM 100 2133 £221 28.59 + 18.83 96
OMPL RRT* 100 2240 + 1.94 4.08 + 1.85 99
RRT*-FND 100 29.90 £ 4.17 142.22 + 33.49 98
T-PRM 500 18.59 + 0.33 17.01 + 5.62 100
OMPL PRM 500 25.69 £ 4.24 230.34 + 123.14 84
OMPL RRT* 500 23.54 £ 3.12 19.35 + 6.89 88
RRT*-FND 500 32.55 £ 6.03 654.52 &+ 159.40 99
T-PRM 1000 18.60 + 0.31 20.93 + 5.37 100
OMPL PRM 1000 29.59 £ 6.37 757.95 + 311.94 66
OMPL RRT* 1000 2442 £ 3.16 51.32 £ 15.57 62
RRT*-FND 1000 36.77 £+ 7.61 1589.18 + 360.83 94

that with a gap size 3 times larger T-PRM is able to find a
connection using only 1000 nodes in 11 ms. In order to keep
timings low, the narrow gap problem can be alleviated by
employing multi-resolution uniform sampling strategies, e.g.
placing nodes more densely around the gap.

2) Dynamic Environments: We run similar experiments
in scenes with moving obstacles to demonstrate the benefits
of T-PRM. Similarly to the previous set of experiments, we
compare our approach against RRT*-FND and OMPL. Since
OMPL is designed to handle only static environments, we
check for collisions at 4 Hz and perform re-planning if the
path is blocked. We run the experiments with an increasing
number of dynamic obstacles, assuming the robot always
moves with constant velocity. The obstacles are spawned
in the navigation area randomly, and they are assigned a
velocity sampled in the interval [—0.2,0.2]>2. In Table
we summarize the results. Thanks to its ability to handle
moving obstacles, T-PRM generates the shortest paths in all
the experiments, with lower computation times than PRM
and RRT*-FND. Moreover, when increasing the number of
moving obstacles, our algorithm is faster than RRT* and
reaches the highest success rates. Notice that we report the
total time taken by the different solvers to generate valid
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Fig. 5.

Fig. 6. Snapshot of the real-life experiment with a static obstacle, modeled
as a pillar. A safety margin of 0.5m, shown as a semi-transparent rim in
the inset, is added to the static obstacle. The starting position is shown as
a blob, while the destination as a star.

paths over the whole run, i.e. summing the timings used to
generate a path at every re-planning iteration. Fig. [5] shows
the comparison between T-PRM and RRT*-FND as consec-
utive snapshots of a 2D experiment with a static (gray) and a
moving obstacle (red), traversing the space and blocking the
direct path from start the goal. While T-PRM finds a feasible
connection in a single planning call, RRT*-FND needs to
iteratively check the obstacle position and update its path.
This is performed by reconnecting the tree and continuously
regrowing it, resulting in higher traveled distances. Examples
of similar experiments in complex scenes are shown in the
accompanying video.

B. Real-World Experiments

We test our algorithm in a series of challenging real-world
experiments, with both static and moving obstacles. The
UAV used in the experiments is a Holybro X500, equipped
with an Intel NUC with an Intel Core i5-1145G7 CPU. We
use the Pixhawk autopiloﬂ as a low-level controller, while
state estimation is performed by fusing inertial data with
VICOI\ﬂ measurements. All the computations are performed

Ihttps://pixhawk.org
Zhttps://www.vicon.com

Comparison of the paths from bottom left to top right shown at different time steps, as they get generated by T-PRM (green) and RRT*-FND
(blue), with a static (gray) and a dynamic obstacle (red) moving in a 10 m X 10 m scene. While the planners have a similar runtime (40 ms), T-PRM with
2000 nodes and a maximum edge length of 1 m generates a shorter path (14.8 m) than RRT*-FND (21.2m), since the latter has to continuously adjust
the trajectory to account for the updated obstacle position.

onboard. We task the drone to navigate autonomously from
one side of the room to the opposite one multiple times.
In a first experiment, the paths generated by T-PRM fly
the drone at 0.5% around the static obstacle, inflated by a
safety margin, placed at the center of the room (Fig. [6). By
sampling 10000 nodes, the algorithm takes 600 ms to build
the initial graph, while every query of the roadmap consumes
about 50 ms.

In a second and more challenging experiment, we show
that T-PRM can perform dynamic obstacle avoidance, by
flying across the room multiple times dodging a virtual
sphere moving with known constant velocity. To test the
online computational capabilities of T-PRM, we manually
trigger the re-planning to force the algorithm to generate a
new path on command. With 10000 nodes, T-PRM takes
up about 40 to 50 ms to recompute the time availability of
the nodes and query a new route, demonstrating that it can
re-plan online at about 20 Hz on an embedded platform. In
Fig.[7} we show successive snapshots of this experiment. In
Fig. [7(b)] a first path is generated and, even if the obstacle
crosses it, no re-planning is required since the sphere and
the drone are not on collision course. The obstacle is then
reset to its starting location (Fig. [7(c)). Since in this case the
spherical obstacle will collide with the robot, re-planning
is triggered and a new path is found. By following the
newly generated path, the UAV dodges the moving obstacle
successfully (Fig. [7(d)).

In a final and most challenging experiment, we demon-
strate the re-planning capabilities of T-PRM when a real
moving obstacle with changing velocity has to be avoided,
with a path and a velocity unknown to the planner. In Fig.
[l we show the path generated by T-PRM that success-
fully avoids the collision with a second drone flying in
the workspace. In this case, the second robot was flown
manually and it was modeled as a spherical obstacle with
non-constant velocity, measured via the VICON system.
Nevertheless, T-PRM was able to generate safe paths in
real-time on the UAV’s embedded computer, successfully
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(a) A snapshot of the experi-
ment.

(b) Initial path generated by T-
PRM.

Fig. 7.

(c) The obstacle is re-spawned
at its starting location.

(d) Dodging maneuver when
the obstacle is in the robot’s
proximity.

Example of a re-planning iteration (a). Initially, the obstacle crosses the computed path (b). The obstacle is then reset, re-planning is triggered (c),

and the drone performs a dodging maneuver to avoid the obstacle (d). Notice that here the UAV’s dimensions are exaggerated for visualization purposes.

The destination is shown as a star.
performing computations online and navigating the robot to
its destination.

V. CONCLUSION

In this work, we present T-PRM, a novel, sampling-
based algorithm for path planning in dynamic environments.
Our method extends the original Probabilistic Roadmap
planner with the notion of time availability, i.e. encoding
the continuous time intervals in which each node of the
roadmap is not in collision with a dynamic obstacle. In
addition, we introduce a variant of A* that simultaneously
deals with the aforementioned time intervals and respects the
time monotonicity constraint when searching for a solution
path. T-PRM maintains all the original properties of PRM,
while being able to perform dynamic obstacle avoidance.
By means of a series of challenging experiments in dynamic
scenes, we demonstrate that the proposed planner generates
smoother paths within a lower computation time compared
to other state-of-the-art algorithms. Moreover, we show that
our planner can be used for path planning in real-time on a
UAY, performing re-planning of trajectories online.

Future directions include investigating the extension of
the proposed planner to non-holonomic robots considering
the full dynamics and dropping the assumption of known
obstacles’ velocities by incorporating the uncertainty of the
velocity estimates into the graph.
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