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Abstract— Autonomous robotic systems are useful in au-
tomating tasks such as inspection and surveying of unknown
areas, where speed is often an important factor. In order to
effectively reduce the time required to complete missions, an
efficient exploration and coordination strategy is needed. In
this spirit, this work proposes an approach based on the Monte
Carlo Tree Search (MCTS) algorithm to guide robots during
exploration missions. Our method first expands a search tree
of possible actions from the robot’s position towards unknown
regions, and then selects the sequence of movements that best
drive the exploration process forward with respect to a given
reward function. The proposed approach, which is able to
balance short- and long-term decision-making, is then extended
to accommodate the presence of multiple robots, in a bid to
push the efficiency of exploration further. Our method allows
for the coordination of the robots’ movements in a decentralized
manner, relying on point-to-point communication. This results
in an efficient strategy, which we refer to as Decentralized
Monte Carlo Exploration (DMCE). The experimental results
demonstrate that our pipeline outperforms a greedy exploration
approach, as well as state-of-the-art planners, with up to 30%
reduction in exploration times in a series of real-world maps.

I. INTRODUCTION

Adopting mobile robots to automate tasks such as in-
spection, 3D reconstruction and search-and-rescue holds the
potential for faster completion times and safer operations.
While these applications have their own unique challenges,
they share a common need for a reliable navigation system
to guide the process, especially when a robot has to traverse
unknown environments. The process of navigating unknown
scenes, aiming at the complete coverage of an area of
interest, is commonly referred to as exploration, and is one
of the most widely studied topics in the robotics research
community [1]. In order to boost the efficiency of missions,
this paradigm has also been extended to employ multiple
robots [2], which makes it possible to cover large areas
faster, while benefiting from increased robustness to failures
of any individual robotic agent. However, achieving efficient
coordination of a robotic team is a complex task which
poses significant challenges from a path-planning perspective
[3], [4]. While solutions to co-localize multiple robots in
a shared map exist [5], [6], coordinating the movements
of the agents efficiently, avoiding duplicated work, is still
an open research question. To this end, simple methods
based on space partitioning are popular [7]; nonetheless,
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Video – https://youtu.be/3RfDq8wlnPI
Code – https://github.com/VIS4ROB-lab/dmce

Fig. 1: Top-view of the paths followed by four robots exploring the
map Urban [12], shown in different colors. Obstacles are depicted in
black, and free space in white. The proposed exploration algorithm,
dubbed DMCE, minimizes the time required to cover the area of
interest by coordinating peers in a decentralized fashion. Start and
end locations are shown as squares and circles, respectively.

they are unable to cope with more complex environments.
Other, more flexible approaches [2], [8] drive the exploration
process using the map of the scene generated online, and
outsource the coordination problem to an external compu-
tational unit, where all the available information, such as
robots’ poses and global maps, is stored. Therefore, since
this class of planners solves the planning problem centrally,
assuming continuous communication with the agents, it is
characterized by poor scalability with respect to the number
of robots in the team and the complexity of the environment.
By contrast, decentralized methods [9]–[11] do not require a
central planning station, instead allowing each robot to plan
autonomously while communicating with peers in their vicin-
ity. The increase in robustness and the lower requirement
of computational power come at the cost of more complex
networking solutions, as well as the risk of less efficient
coordination.

Motivated by these challenges, in this work we propose an
exploration strategy based on the Monte Carlo Tree Search
(MCTS) algorithm [13], aiming at the efficient coverage
of unexplored areas of interest while maintaining flexibility
with respect to a variety of mission goals and requirements.
Furthermore, we demonstrate how our approach can be
extended to multi-robot settings in a decentralized fashion
(Fig. 1). In a nutshell, the proposed planner attempts to
minimize the time required to cover the areas of interest
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by first creating a tree of possible actions that the robots
can undertake, and then selecting the one that maximises the
expected exploration gain. In order to allow for the changes
to the map as the robots traverse the environment, our
strategy continuously adjusts the underlying tree structure,
and balances short-sighted greedy behaviour with longer-
term actions. We demonstrate that the proposed solution
yields better results than a greedy approach and state-of-the-
art planners, and that it can be scaled up to multiple robots
following the paradigm of decentralized coordination.

In brief, the contributions of this work are:
• the design of an exploration strategy based on a novel

version of the MCTS algorithm, modified to work in
the context of robotic exploration,

• the integration of frontier-based actions, boosting the
efficiency of the exploration process,

• the extension of the single-robot case to a multi-robot
decentralized approach,

• extensive evaluations in simulation, demonstrating bet-
ter performance than the state of the art, and

• the source code of the planning strategy and simulation.

II. RELATED WORKS

Exploration planning has been a topic of extensive re-
search in robotics due to its broad applicability. With the
outlook of practical application, the common goal is often
fast scene exploration by eliminating the unknown space
as quickly as possible. To this end, frontier-based methods
have been particularly successful, since they target regions
on the boundary between known and unknown space [14].
There are different criteria used to decide which frontier
to explore next, such as their proximity to the robot [15],
following a greedy selection strategy [16] or having global
planning dictate their selection [17]. Other works focus on
the problem of active Simultaneous Localization and Map-
ping (SLAM) for indoor robotic navigation, with the aim of
reducing the localization error at the cost of longer travelled
distances [18], [19]. While these works concentrate on the
coverage problem, another flourishing research direction is
3D reconstruction of unknown structures, whereby the task
is to propose viewpoints for accurate surface estimation [20].

Aiming at improving their efficiency and reducing mission
times, these different paradigms of exploration planners have
been extended to accommodate for the presence of multiple
robots. Even though this implies harder challenges from a co-
localization and mapping perspective as mentioned in [3], in
this work we focus exclusively on the coordination aspect.
While single-robot strategies can be extended to multi-
agent setups by partitioning the area of interest according
to the number of robots [7], this does not ensure efficient
collaboration between them or resilience to single-robot
failures. With the objective of addressing this limitation,
cooperative frontier-based approaches have been proposed
in centralized [2], [8], [21] and decentralized [10], [22]
fashions. Centralised methods feature a hub or ground station
where a global multi-robot plan is first computed, and then
communicated to the agents. To this end, the early work by

Burgard et al. [2] aims at reducing the overlap in explored
areas, by down-scaling the information gain of a candidate
frontier if another robot is assigned to a different frontier in
its vicinity. The work in [21] proposes a similar solution, but
adopts a sampling-based approach, where frontiers are found
and assigned by means of a Rapidly-exploring Random
Tree (RRT). Alternatively, Tian et al. [23] solve a Multiple
Travelling Salesman Problem (mTSP) to allocate each agent
to a candidate frontier. While this method holds the potential
of finding the globally optimal solution, its computational
complexity scales exponentially with the number of robots.
Furthermore, in exploration tasks, only partial knowledge
of the environment is available, severely limiting the a
priori optimality of the plans. Alternatively, decentralized
approaches allow each robot to plan autonomously, and
coordination is ensured by allowing robots to share local
information with the other agents in their vicinity. While
these methods are characterized by higher flexibility and
better scalability with respect to the team size, they sacrifice
the global optimality of the trajectories as they rely on
local information only. Kabir and Lee [11] aim at mitigating
this limitation basing their approach on optimal transport
theory, while other solutions utilize Artificial Potential Fields
(APFs) [24]; however, this last class of methods is well-
known to be bound to find only local optima. This effect is
exacerbated in multi-robot settings, where the presence of
multiple robots highlights the suboptimality of their frontier-
assignment process. Aiming at overcoming this limit, Yu et
al. [25] propose a strategy, dubbed Multi-robot Multi-target
Potential Field (MMPF), where the objective is to eliminate
local minima to boost the efficiency of target assignment.
Another line of research focuses instead on the Monte Carlo
Tree Search (MCTS) algorithm. To this end, Best et al.
[9] propose a decentralized MCTS-based planner for robotic
active perception tasks, whereby the coordination problem
is addressed by performing a distributed optimization over
the joint action-space of the robots. However, this method
cannot be easily transferred to frontier-based exploration
scenarios, since their focus is on long-term optimal plans,
which cannot be efficiently computed given the short-horizon
nature of exploration planning. Lauri and Ritala [26] model
exploration as a Partially Observable Markov Decision Pro-
cess (POMDP), using frontier-based planning as a fallback
strategy. However, they do not address the multi-robot case.

Inspired by these shortcomings, this work proposes an
exploration strategy based on MCTS, that is then extended
to multi-robot settings in a decentralized fashion. The pro-
posed planner, titled Decentralized Monte-Carlo Exploration
(DMCE), generates actions guiding the robots towards the
most informative frontier. Coordination is ensured by allow-
ing robots to share information about the map and their cur-
rent plan with nearby agents, effectively reducing the overlap
between assigned regions and redundancy in the exploration
process. Consequently, our approach yields better exploration
performance in terms of time required to explore a region of
interest compared to other state-of-the-art approaches [21],
[25] and a greedy strategy, effectively boosting the efficiency



of robotic exploration missions.

III. PROBLEM DESCRIPTION

The overall problem considered in this work is the ex-
ploration of 2D areas of interest using autonomous robots,
with the objective of minimizing the time required to com-
plete the mission, i.e. to fully explore the reachable area.
We base the proposed exploration strategy on MCTS, and
we extend it to multiple agents following a decentralized
approach, aiming at efficient fleet coordination. To this end,
we assume that the robots are holonomic and co-localized
in a common reference frame, and that their poses, together
with measurements from range sensors, such as LiDARs, are
available at a constant rate. Using this data, we generate an
occupancy map of the environment online, and we consider
the exploration process complete when all unknown regions
are cleared.

IV. MCTS-BASED EXPLORATION

In its simplest form, the MCTS algorithm generates a tree
of candidate action sequences by randomly sampling the
space of feasible actions, with the aim of maximising a given
reward function. In the context of robotic exploration in 2D
space, each node xr

s, or state, in the search tree for robot r
represents the robot’s position xr ∈ R2, together with the
occupancy map of the environment, estimated by simulating
the action sequence from the tree root to xr. From each initial
state xr

0, the robot can carry out a plan pr ∈ Pr, defined as
a sequence of feasible actions ari ∈ A(xr) with i = 0, ..., T
over the planning horizon T . Thus, a path can be understood
as a sequence of states {xr

0, x
r
1, ..., x

r
T } originating from the

root xr
0 to the leaf xr

T of the tree, with each edge between
consecutive nodes representing an action. Given a reward
function V (xr

0, p
r), which assigns a score to every state-plan

pair, the robot adopts the plan that maximises the expected
reward for the current state xr

0:

p̂r(xr
0) := arg max

p∈Pr
E [V (xr

0, p)] . (1)

Note that in standard MCTS implementations the reward
function considers the final state (i.e., V (xr

T , a
r
T+1)), which

implies the necessity to store a partially explored map for
each tree node. This is memory-intensive and leads to sub-
optimal action selection, since the maps quickly become
outdated; consequently we define our reward function over
the path p, and regenerate xr

T from the current map. As our
objective is rapid exploration, a natural choice for V is the
total explored area on the map. Using 2D occupancy grids
for mapping, this amounts to:

V (x, p) :=
Nf

known

Ncells
= 1−

Nf
unknown

Ncells
, (2)

where Nf
known and Nf

unknown are the number of known and
unknown cells, respectively, after the simulated execution of
the plan. Notice that V is normalised with respect to the total
number of cells Ncells in the grid, in order to account for
different map resolutions and environment scales.

In the following, we detail the steps of the iterative growth
of the search tree, as depicted in Fig. 2. Notice that MCTS is

an any-time algorithm, i.e. a solution can always be queried
after any complete iteration.

A. Selection

The first step of the algorithm aims at finding the most
promising branch of the tree to expand. To this end, the tree
is traversed, starting from the root and iteratively selecting
the child node that maximises a given utility function U .
A common choice for U is the Upper Confidence bound
for Trees (UCT) [27], which balances exploitation of known
action sequences versus the exploration of new pathways:

U(xs) := E[Vs] + λ

√
logNs

ns
, (3)

where E[Vs] := Ṽs/ns is the expected value at s, Ns

indicates the number of times the parent node of s has
been visited. The values {Ṽs, ns} are stored on each tree
node; Ṽs is the value of traversing node s estimated over ns

passes during the growth of the tree. λ is a parameter that
controls the exploration-exploitation trade-off: exploitation
is favored when λ is set to zero, as the highest-value path
at each iteration is selected, whereas larger values of λ
tend to favor exploration and push the iteration closer to
a breadth-first approach. Generally, the optimal value of
λ is application-specific, and is determined empirically to
maximise performance. This process continues until a leaf
state xr

L is found, i.e. until a node with one or more
unexpanded children is hit.

1) Accounting for Action Duration: In traditional MCTS,
the expected reward for carrying out an action as for robot
r is estimated as the average value obtained over multiple
simulated action sequences. However, due to the varying
travel distances to target locations, the different actions
require varying lengths of time for execution: the longer an
action takes, the more uncertain its outcome, since longer
routes imply a higher probability of sudden changes in
the map as the environment is traversed. To alleviate this
shortcoming, we aim at biasing the planner towards shorter-
term actions by modifying the reward expectation as follows:

E[Vs] = τ ts
Ṽs

ns
, (4)

where τ ∈ (0, 1] is a discounting factor and ts is the
duration of action as, which is calculated using the straight-
line distance to the target and the robots’ maximum velocity.

B. Expansion

In this step, the tree is expanded from the leaf xr
L by

selecting an action a at random from the set of feasible
actions A. The corresponding state x̃r

L+1 is obtained by
simulating a from xr

L, and then added to the tree. We
determine the feasible actions A by sampling straight-line
movements of fixed length in random directions (Fig. 3). In
order to ensure safety, actions that would cause the robot to
collide with an obstacle are rejected; furthermore, to keep
the tree size bounded, avoid redundancy, and improve the
computational efficiency of the algorithm, directions that
deviate by less than α = 15◦ from previously sampled



(a) (b) (c) (d)

Fig. 2: Schematic overview of the iterative expansion of the search tree in the MCTS algorithm for a single robot r. Each node s stores
the value Ṽ r

s of traversing s estimated over ns passes through the node during the growth of the tree. (a) In the Selection step, the tree is
traversed from the root xr

0 and the leaf node xr
L with highest utility U(xr

L) is selected. (b) The leaf node is then expanded (Expansion)
by simulating a random action a and the resulting child node xr

L+1 is added to the tree. (c) In the Rollout, a path pR of random actions
starting from xr

L+1 is simulated and the resulting rollout reward Ṽ r
R is calculated. (d) Finally, during Backpropagation, the value of the

newly added node (in red) is propagated by traversing the tree in reverse until the root is reached.

Fig. 3: Schematic overview of the action sampling process in a
2D occupancy map. Given the robot’s current position (green blob)
and previously selected actions in A (cyan), candidates are sampled
in random directions within a forward-facing arc (light gray area).
Valid actions (dark green) are added to the set of feasible actions
A, while those leading to collisions (red) are discarded. Similarly,
displacements with angular distance α from previously selected
actions lower than a threshold (dotted purple line) are rejected.

displacements are discarded. Similarly, in order to prevent
unnecessary back-and-forth movements, the sampling of new
directions is restricted by a maximum turn angle with respect
to the parent action. However, this restriction is relaxed if
no suitable actions can be found, e.g. when sampling in the
vicinity of an obstacle. The performance of MCTS is very
sensitive to the branching factor β: while low values keep
the cost of the tree search manageable, they risk producing
poor-quality plans. On the other hand, high values of β lead
to large computational costs, which must be contained for
real-time applications.

Robotic exploration presents further challenges, which we
address with the following modifications to the standard
MCTS algorithm:

1) Changes in the Environment: During exploration, the
map of the environment is subjected to continuous changes,
possibly leading to some actions previously considered fea-
sible suddenly becoming invalid, as shown in Fig. 4. In
order to overcome this limitation, we propose to re-check
the feasibility of actions when traversing the tree during
each MCTS iteration, and to prune branches corresponding
to infeasible displacements. If a node would be left without
children, its set of feasible actions is generated anew.

2) Improving Planning Range: During the sampling pro-
cess, feasible actions are generated as fixed-length displace-
ments, which directly tie the effective range of the planner
to the depth of the search tree. Thus, the computational
cost of detecting unexplored areas increases exponentially
with their distance from the root of the tree; in practice,

(a)

(b)

Fig. 4: Schematic overview of the re-growing process of the
search tree when a new obstacle is discovered. (a) The tree is
initially grown from the robot’s current position (green blob) by
expanding randomly-sampled branches (gray). Additionally, actions
connecting the root to the centroids of the clustered frontiers (shown
as coloured cells) are added to the tree (red dotted line). The path
maximising a given reward function is then selected for execution
(dark blue). (b) As the robot moves, the map is explored. During
navigation, the feasibility of actions in the tree are checked at a
constant rate and invalid actions are pruned. The tree is then re-
grown, and a new path is found.

this often causes the search to deteriorate to a random
walk, especially in complex environments. In order to allow
the robot to detect unexplored regions far from the current
position, frontier cells in the map are clustered. The set of
actions is then augmented with displacements from the tree
root to the n closest frontier cluster centroids. Note that this
differs from the approach presented in [26], where frontier-
based exploration is only used as a fallback solution.

C. Rollout

After the tree is expanded, a plan pR composed of a series
of randomly selected actions is simulated starting from the
state x̃r

L+1 in the rollout phase. The length of pR is limited
to a fixed number of actions, known as rollout depth. The
rollout reward Ṽ r

R = V (x̃r
L+1, pR) is then evaluated, and the

result stored as the initial value estimate Ṽ r
L+1 for the new

node.
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Fig. 5: Schematic overview of the DMCE pipeline. The plan for
every robot in the fleet is computed using a multi-agent variant of
the proposed MCTS algorithm and then communicated to its peers,
while the received plans are stored locally in buffers. The presence
of the other team members is considered in DMCE during the multi-
robot rollout stage, where we use the the history of the last nP plans
of the other agents to drive the robots towards unassigned areas.

D. Backpropagation

After determining the value of the newly added node in
the rollout, this information has to be propagated through the
tree. During backpropagation, the search tree is traversed in
reverse starting from the new state, and the stored values of
each parent node s are updated until the root is reached:

Ṽ r
s ← Ṽ r

s + Ṽ r
R,

ns ← ns + 1.
(5)

V. DECENTRALIZED MULTI-ROBOT MCTS

We now extend the proposed exploration strategy to a
decentralised multi-robot setting, with point-to-point com-
munication. The extended, multi-agent pipeline, named De-
centralized Monte-Carlo Exploration (DMCE), is shown in
Fig. 5. Assuming the robots are co-localized in a common
reference frame, they exchange information about the plan
to execute. After collecting information from peers, each
robot plans its own actions. Notice that here the map of
the environment is built collectively, and we consider the
exploration process complete once no new frontiers can be
extracted from the map.

A. Coordination by Plan Sharing

After running the MCTS algorithm as descibed in Sec. IV,
each robot shares its plan with the other fleet members. The
agents store the received information in separate per-robot
buffers, containing the most recent nP plans. Before starting
another iteration of MCTS, the robot randomly samples one
of these stored plans for each peer, and the map of the
environment is modified by simulating each of the selected
plans in a multi-robot rollout. This indirectly modifies the
reward function in Eq. (2) to discourage the robot from
exploring areas that other agents are planning to visit, since
those locations are marked as explored during this rollout
process. While the overall computational complexity of this
approach scales with O(N2), it is important to note that,
being a decentralised method, the limiting factor is actually
the O(N) scaling of a single MCTS rollout. Furthermore, a
benefit of this strategy is its resilience to imperfect commu-
nication since, in the case no plan is received from another

peer, it is simply not simulated, and the exploration process
continues as normal. This implies that in many complex,
communications-restricted environments, the typical rollout
cost may even scale with O(1), as most peers do not share
plans at all times.

B. Local Rewards

A limitation of the proposed coordination approach is the
fact that the reward function of Eq. (2) does not differentiate
between the contributions of peers and the impact of the
robot’s self-plan. To increase the sensitivity of the reward
function to the selected plan pr, we adopt the concept of
local reward [9]. This is defined as the difference between
the reward when robot r performs plan pr and the case of
simply idling with an empty plan p∅:

Vloc(x
r, pr) = V (xr, pr)− V (xr, p∅)

=
N i

unknown −Nf
unknown

Ncells
,

(6)

where N i
unknown and Nf

unknown are the number of undis-
covered cells in the map before and after the rollout of plan
pr, respectively. This reward is used for planning, replacing
the former definition of Eq. (2).

C. Rollout Discounting

The nature of exploration processes implies the possibility
of sudden, large changes in the map of the environment.
These can cause discontinuities in the value function V (x, p),
leading to the estimates Ṽ r

s being outdated. This has a large
impact not only on the exploration performance of the robots,
as described in Sec. IV-B.1, but also on the coordination of
the fleet. To mitigate this effect, we introduce a discounting
factor γ ∈ (0, 1] to the backpropagation step of Eq. (5) as
follows:

Ṽ r
s ← γ · Ṽ r

s + Ṽ r
R,

ns ← γ · ns + 1.
(7)

This effectively discounts the contributions of older rollouts,
weighting the value estimation in favour of the most recent
ones, which are more representative of the current state of
the exploration process.

VI. EXPERIMENTS

To assess the performance of the proposed method, the
pipeline is tested in maps of varying difficulty, namely
Urban and Tunnels [12] from the DARPA Subterranean
Challenge, and the natural scene Forest [28]. These are
obtained from scans of real-world environments, and are
characterized by different topology of the space, as well
as density of obstacles. The experiments are conducted in
a custom kinematic simulator, where robots are modelled
as circular omnidirectional platforms equipped with LIDAR
sensors (1◦ ray spacing) and only agent-to-environment
collisions are considered. We initialise the robots in random
positions within a starting area, and we report the total time
and travelled distance required to explore the environment,
i.e. until no reachable space is left unexplored. The simulated
robots’ sensor range is 10m, and the reconstructed map



resolution is 0.25m (Urban scenario) or 0.5m (Tunnels
and Forest scenarios). Our approach is compared against a
greedy frontier-selection strategy, and the methods by Umari
and Mukhopadhyay [21] and Yu et al. [25]. While the
greedy planner clusters frontiers and assigns each robot to
the closest cluster centroid, Umari and Mukhopadhyay [21]
grow an RRT towards unknown areas to passively search
for frontiers. These are then clustered, evaluated in terms of
expected exploration gain, and finally assigned to the agents.
To address fleet coordination, Yu et al. [25] create instead
a continuous potential field over the navigation area. The
potential function for every point in the map is calculated
summing the informativeness of frontier clusters in terms
of exploration gain, scaled by the length of the shortest
collision-free path connecting each candidate point to the
centroid of the cluster. To achieve fleet coordination, the
potential field is modified by adding a penalty if a point
lies within an agent’s sensing range; finally, each robot
is assigned the most informative location in the field. For
fairness of comparison, we use the coordination strategy from
[25] discarding the multi-agent state estimation components
of the pipeline.

A. Performance Metrics

Performance is tracked by measuring the explored fraction
of the discoverable portion of the environment. Notice that
this differs from the traversable region of the environment,
as not all traversable map cells can necessarily be reached
by the robots (e.g. tight passages). As a result, the maximum
discoverable area is determined empirically, and exploration
is considered complete when 95% of the discoverable area
has been mapped. In an attempt to isolate the exploration
rate from the quality of the generated plans, we report the
time required by each strategy to complete exploration, as
well as the total travelled distance covered by all the robots.
While completion times are a strong indicator of effective
coordination, as lower values indicate better spread of the
robots in the environment, the lengths of the travelled paths
are directly linked to the efficiency of the proposed plans
– namely, longer paths imply less efficient planning, for
instance back-and-forth movements. Furthermore, we cap
the maximum allowed mission time in each scenario, and
we mark the run as failure if exploration is not completed
within the time limit. This is set to 900 s and 450 s in the
map Urban for the single- and multi-robot cases, while the
experiments in Forest and Tunnels are limited to 350 s and
900 s, respectively.

B. Results

1) Ablation Study: We study the effect of the proposed
coordination strategy by comparing the fully coordinated
DMCE pipeline against an MCTS-based strategy which
performs no plan-sharing or peer rollouts. The results in
Table I indicate that, while DMCE is able to explore the
same environment marginally faster than its uncoordinated
variant for 2 and 3 robots, its performance degrades with 4
agents. The reason is the increased planning time due to the

Number of Robots
Strategy 1 2 3 4

Ours
Time [s] 477± 70.4 262± 55.1 213± 40.1 193± 48.7

Travelled Distance [m] 443± 65.9 443± 95.7 498± 92.8 520± 144

Ours (uncoord.)
Time [s] 489± 102 262± 50.1 221± 44.5 170± 25.9

Travelled Distance [m] 445± 83.6 454± 68.8 566± 97.7 582± 99.7

TABLE I: Mean and standard deviation of time and cumulative
travel distance required to complete exploration of the Urban
scenario with DMCE (Ours) and its uncoordinated variant (Ours
(uncoord.)), over 10 runs. The best performance is highlighted in
bold.

multi-robot rollout; this is evidenced by the fact that DMCE
is able to consistently plan the shortest paths, even with 4
robots, thanks to effect of coordination. Note that, due to
practical limitations, the computational resources used were
kept constant for all simulations.

2) Comparisons to Baselines: We compare our proposed
strategy to the baseline methods with two robots in multiple
environments, and report the results in Figure 6. In all cases,
DMCE outperforms its competitors by a significant margin.
While both Umari and Mukhopadhyay [21] and Yu et al.
[25] perform better than the greedy planner, our method
outperforms all three, both in the time to completion as
well as in efficiency over the total travelled distance. These
differences are due to the different underlying strategies:
while the baseline methods drive the robots towards the best
frontier in terms of information gain, we explicitly formulate
our goal as the uncovering of previously unexplored areas,
which allows for more flexible and efficient navigation.

3) Multi-robot Scaling: The three scenarios were chosen
to represent different types of environments, ranging from
mostly open terrain (Forest), where the planners perform
most similarly, to corridors with limited connectivity (Tun-
nels) where coordination is most important. The third envi-
ronment, Urban, is middle-ground between these extremes,
and for this reason it was chosen for a more in-depth compar-
ison of the multi-robot scaling of each planner. Fig. 7 reports
the performance of each planner in the Urban environment
with varying numbers of robots. While increasing the agent
count benefits every strategy, our method is consistently able
to outperform other methods.

4) Impact of Communication Range: To further assess the
robustness of the different approaches, we test them in the
case of limited communication range for point-to-point com-
munication. We report the results in terms of time required
to complete the mission for a team composed of two robots.
As Fig. 8 shows, even under restricted communication range,
our planner outperforms its competitors, leading to lower
completion times.

VII. CONCLUSIONS AND FUTURE WORK

Inspired by the need for effective and flexible exploration
approaches, this work presents an online exploration strategy
based on the MCTS algorithm, allowing for time-efficient
coverage of areas of interest. By creating a tree of possi-
ble actions, the robot selects the path that maximises the
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Fig. 6: Planner performance for two-robot exploration of the test environments. Each planner was evaluated for 10 runs; reported are mean
(lines) and standard deviation (shaded regions) of the successful runs. Our approach and its variant are in blue and orange, respectively,
while the greedy approach is in purple. The method by Yu et al. [25] is in red, whereas Umari and Mukhopadhyay [21] is in green.
On the far right, we show a top-view of the maps, where the white area is the discoverable space. The map Urban has a dimension of
75m× 50m, while Tunnels of 100m× 100m and Forest of 60m× 60m.
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Fig. 7: Planner performance for varying numbers of robots in the Urban scenario. Each planner was evaluated for 10 runs; reported are
mean (lines) and standard deviation (shaded regions) of the successful runs.
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Fig. 8: Two-robot exploration of the Urban scenario with line-of-
sight restricted communications. Reported are mean and standard
deviation of the fraction of explored terrain, as measured at the
robots’ common depot, averaged over 10 runs.

expected information gain, striking an effective trade-off
between short and long-term planning. Furthermore, adding
frontier-based actions helps the planner to avoid deadlocks.
To account for the changing environment as it gets explored,
we continuously adjust the underlying tree structure online,
ensuring safety during path execution. Following a decen-
tralized coordination paradigm, the proposed strategy is also
extended to accommodate the presence of multiple robots in
the environment. Comparisons on a testbed of different real-
world maps reveal consistently faster exploration, as well as
more effective coordination than the state of the art. Future
work will focus on the integration of the proposed pipeline in
real platforms, and investigate more advanced strategies to
deal with line-of-sight restricted communications. Another
interesting avenue for future studies would be the explo-
ration of different kinds of actions, for example through the
abstraction of the global environment into a dynamic and
distributed topological graph. This would allow the method
to be applied to large-scale environments, as well as a more
accurate estimation of the displacement times. Finally, while
the effectiveness of the proposed coordination strategy is
demonstrated by its ability to plan shorter paths compared
to the uncoordinated planner, the high computational cost of
the multi-robot rollouts reduces the benefits in terms of time
required for exploration. To address this limitation, more
cost-effective coordination strategies will be investigated.
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