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Sweep-Your-Map: Efficient Coverage Planning for
Aerial Teams in Large-Scale Environments

David Morilla-Cabello1, Luca Bartolomei2, Lucas Teixeira2, Eduardo Montijano1, and Margarita Chli2

Abstract—The efficiency of path-planning in robot navigation
is crucial in tasks such as search-and-rescue and disaster survey-
ing, but this is emphasized even more when considering multi-
rotor aerial robots due to the limited battery and flight time. In
this spirit, this work proposes an efficient, hierarchical planner to
achieve comprehensive visual coverage of large-scale outdoor sce-
narios for small drones. Following an initial reconnaissance flight,
a coarse map of the scene gets built in real-time. Then, regions
of the map that were not appropriately observed are identified
and grouped by a novel perception-aware clustering process that
enables the generation of continuous trajectories (sweeps) to cover
them efficiently. Thanks to this partitioning of the map into a set
of tasks, we can generalize the planning to an arbitrary number
of drones and perform a well-balanced workload distribution
among them. We compare our approach against a state-of-the-
art method for exploration and show the advantages of our
pipeline in terms of efficiency for obtaining coverage in large
environments. Video – https://youtu.be/V2UIrM91oQ8

Index Terms—Aerial Systems: Perception and Autonomy; Path
Planning for Multiple Mobile Robots or Agents; Mapping.

I. INTRODUCTION

RECENT advances in robot navigation and perception
have enabled the establishment of modern multi-rotor

aircraft, i.e., drones, as the best choice for autonomous 3D
reconstruction or visual coverage of large-scale outdoor sce-
narios. Their flexibility allows them to move freely through the
environment and observe areas that are not visible from the
ground. However, time efficiency is critical for using drones
because of their short flight times (due to battery limitations),
usually well under 30 minutes. Therefore, the efficiency and
effectiveness of the planning algorithms are essential to enable
the deployment of drones in large-scale outdoor environments.
Similarly, using multiple drones as advocated in this work
promises to boost the efficiency of the scene-coverage mission.

Deploying drones for mapping a large area from a high
altitude is an effective way to obtain a first estimation, as

Manuscript received: February 24, 2022; Revised: June 10, 2022; Accepted:
July 6, 2022.

This paper was recommended for publication by Editor Pauline Pounds
upon evaluation of the Associate Editor and Reviewers’ comments. This
work has been supported by the ONR Global grant N62909-19-1-2027,
the Spanish projects PGC2018-098817-A-I00 and PGC2018-098719-B-I00
(MCIU/AEI/FEDER, UE), DGA T45-20R, and Spanish grant FPU20-06563,
Swiss National Science Foundation (SNSF, Agreement no. PP00P2183720),
NCCR Robotics, Amazon and the HILTI group.

1 David Morilla-Cabello and Eduardo Montijano are with the Instituto
de Investigación en Ingenierı́a de Aragón, Universidad de Zaragoza, Spain
{davidmc, emonti}@unizar.es

2 Luca Bartomei, Lucas Teixeira and Margarita Chli are with the Vi-
sion for Robotics Lab, Department of Mechanical and Process Engineer-
ing, ETH Zurich, Zurich, Switzerland {lbartolomei, pilucas,
mchli}@ethz.ch

Digital Object Identifier (DOI): see top of this page

Fig. 1: Team of drones that sweep the area of interest by flying paths generated by
the proposed planner in order to achieve fast coverage. Using a rough prior map (e.g.
captured in a reconnaissance flight) to identify areas that require further observation, this
work generates efficient path planning and workload distribution for a team of drones
(three in this example) to cover the scene.

collisions with the environment can be more easily avoided.
However, this strategy does not provide informative enough
viewpoints for scene coverage and impacts the quality of
the scene captures. State-of-the-art exploration approaches [1],
[2] often lack efficiency because of problems such as over-
exploring local regions, and abrupt changes in motion due to
constant re-planning or the need for revisiting areas.

To overcome these limitations, this paper presents a hybrid
solution that uses the best of both types of strategy in a
synergetic way. In this work, we assume a team of drones
with cameras, each performing a fast, reconnaissance flight at
a high altitude capturing a rough map of the area of interest
using a coarse real-time mapping pipeline. Based on this map,
the proposed method computes a set of drone trajectories
for subsequent flights in order to efficiently cover the area
of interest completely. This process aims to maximize the
use of sweep lines to avoid constant changes in the flight
direction, while considering the visibility of surfaces and, at
the same time, managing the workload distribution amongst
the participating drones to minimize the execution time. The
main contribution of this paper is the overall perception-aware
global planning that is capable of handling the initial, noisy
and coarse map as well as enforcing high-speed trajectories.

II. RELATED WORK

Aerial path planning for efficient exploration has been a
topic of extensive research in robotics and computer vision
due to its wide applicability.

A. Scene exploration and coverage

With the outlook of practicality, robotics approaches often
focus on fast scene exploration, by eliminating the unknown
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space as quickly as possible. Frontier exploration methods
look for regions, where free and unknown space meet [3].
There are different criteria used to decide which frontier to
explore next, such as their proximity to the current field of
view [4], following a greedy selection strategy [5] or having
global planning dictate their selection [1]. All these methods
focus on volumetric representations of the map, whereas our
approach considers surfaces and their visibility.

Other works use Active SLAM in 2D environments for
indoors ground robot navigation using landmarks [6], [7] or
learning methods [8], [9]. In comparison, we consider aerial
robots in 3D outdoor environments to obtain comprehensive
visual coverage.

When considering the reconstruction of surfaces, sampling-
based approaches propose viewpoints based on their expected
information gain. For example, accurate surface reconstruc-
tions [10] can be achieved in a Next-Best View fashion [11].
In order to improve the efficiency of the planning, Rapidly-
exploring Random Trees are a common approach [10], [11]. To
improve the sampling process, [2] applies informed sampling
of configurations by reasoning over the available reconstructed
model. The method in [12] considers voxels lying on the
surface at a frontier. In general, all of these methods use depth
cameras that allow for exploration or reconstruction in indoor
and small scenarios. The performance in large-scale outdoor
scenarios as considered in this work decreases as the sensor
range only allows for close observations. In [13], online Multi-
View Stereo (MVS) is used to incrementally assess the surface
reconstruction. In comparison, the proposed approach executes
a fast high-altitude reconnaissance flight to obtain a global
coarse map as a prior and provide an insight into the structure
of the whole scene at once.

B. Use of a prior map

Other works used priors for improving the view selection
for 3D reconstruction and generating a global plan. They
analyze a prior map obtained from a previous flight in order to
plan views that maximize heuristics for 3D reconstruction as
parallax angle [14] or matchability [15]. In [14], the problem
is addressed by using submodular optimization to improve the
proposed views in the free space and obtain the final trajectory
by solving an orienteering problem accounting for a maximum
allowed time budget. Submodular optimization is also used by
[16] to plan views based on volumetric representations in an
anytime optimization.

As discussed by [13], many of the previous methods obtain
theirs prior from MVS pipelines, which is time-consuming
and might require long waiting times for processing. In this
work, we obtain a prior map online using depth completion to
extract good estimates of the views to reconstruct the scene.
The work in [13] considers individual views without focusing
on the trajectory to connect them, which might generate path
redundancies. In contrast, we leverage the fact that many of
these views can be grouped in a single efficient trajectory in
order to cover large parts of the scene, e.g., building facades.

C. Multi-robot extension

All of the aforementioned methods assume a single robot.
While they can be extended to multi-robot setups by parti-
tioning the area of interest according to the number of robots,
this does not ensure efficient enough collaboration between
them. Cooperative frontier-based approaches have also been
proposed in a centralized [17] and decentralized [18] way.
These methods address the coordination problem in frontier-
based approaches but suffer from the aforementioned locality
problems. The work in [12] extends to the multi-robot case
by greedily assigning the view configurations [19]. The work
in [20] distributes the workload through continuous region
partitioning based on Voronoi components. By considering the
whole map and the set of regions to be covered (tasks) as a
Vehicle Routing Problem (VRP), the generalization to multiple
drones is straightforward in our pipeline, easily accounting
for collaboration between them and minimizing the overall
mission time.

III. METHOD

Our goal is the efficient mapping of a bounded 3D outdoor
space using a team of drones equipped with one monocular
camera each. We achieve this by developing a system that
computes smooth and straight flights for the drones to reduce
the execution time of a mission. These trajectories are dubbed
sweeps, as the maneuvers can be executed at higher speeds
and do not require changing the flight direction.

In order to follow good practices in MVS reconstruction, we
also search for trajectories that yield fronto-parallel views of
the scene surfaces to maximize the scene coverage and quality
of a posterior reconstruction.

A. System overview

Our planner is illustrated in Figure 3 and the results at
different steps of the pipeline are shown in Figure 2. First, an
initial down-looking (nadir) flight over the area is performed
by the drones (Figure. 2a). The aim of this reconnaissance
flight plan is twofold: to capture a large portion of the top
view of the area of interest flying at high speeds, and to obtain
a global overview of the scene online. This enables better-
informed reasoning over the subsequent drone trajectories to
complete the coverage due to the detection of missing and
poorly observed surfaces on the map (Figure. 2b). These
surfaces are then grouped into clusters by a novel perception-
aware clustering algorithm (Figure. 2c), favoring the gener-
ation of flights that sweep the scene to better capture these
surfaces with efficient maneuvers (Figure. 2d). The next step
computes global paths for all drones participating in the
mission, aiming to minimize the distance traveled and the
duration of the mission. This is achieved with a variation
of the classical Vehicle Routing Problem (VRP), assigning
surface clusters to the drones (Figure. 2e). The processing of
the initial map and the global plan is performed by a central
server that integrates the measurements obtained in the initial
reconnaissance flight. Finally, the flight plans are assigned to
the drones and a trajectory planner guides the drones smoothly
along the sweeps to obtain new relevant views of the scene
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(a) Reconnaissance flight (b) Analysis of the map (c) Perception-aware clustering

(d) Sweep generation (e) Global planning (f) Local trajectory execution

Fig. 2: The drones perform a down-looking flight to compute online a coarse initial map shown in (a), which is used to detect poorly observed or missing areas visualized in
(b); red voxels correspond to surfaces seen from an oblique point of view (i.e., poorly observed) and blue voxels represent missing areas. Using perception-aware clustering these
missing areas get clustered, shown in different colors in (c). The clusters are used to compute sweeps, visualized in (d), to observe them efficiently. The orange arrows represent
the surface normals and red lines, the computed sweeps. The global paths of each drone are shown in (e), as computed by a VRP aiming to minimize the mission time and favor
longer sweeps. These get smoothed out by a local planner to result in the final drone trajectories seen in (f).

Fig. 3: Proposed pipeline. The drones send measurements for the initial map integration
to a central server. This processes the information to generate an efficient plan for the
team of drones, which is communicated back to the drones.

(Fig. 2f). This execution is carried out without the need of
exchanging information with the server or between the drones,
favoring the deployment of small and low-powered platforms.
In practice, one run of the pipeline is enough to cover most
of the scene. Only complex concave surfaces, galleries, and
narrow passages could remain unexplored as they are not
detected from the top of the scene. A possible way to explore
them would be to integrate the local plans observations into
the initial map to repeat the process until the whole scene is
covered.

B. Initial map

The reconnaissance flight captures top views of the scene
to obtain a first approximation of the map quickly. However,
the high altitude, together with the use of monocular cameras
onboard the drones render the generation of this map challeng-
ing without the use of MVS expensive reconstruction methods.
To compute it online, we use a depth completion system [21]

onboard the drones that provides dense depth measurements
from a sparse input, e.g., SLAM.

The depth measurements are integrated into a common
voxel-based Truncated Signed Distance Field (TSDF) map,
that incrementally builds a Euclidean Signed Distance Field
(ESDF) map [22], M. Voxels are organized in a uniform grid,
where each voxel, m ∈ M, contains a distance, dm, to the
closest surface and a weight, wm, that contains the confidence
about the depth measurement of that voxel. Moreover, we
denote by pm the centroid of the voxel and nm its normal
vector. Voxels that do not have any measurement have an
associated weight equal to w0.

The initial map is analyzed in order to detect voxels
that require additional observations. In particular, voxels that
belong to a poorly observed surface, Ms, and voxels without
measurements (i.e., are unobserved), Mu.

Surfaces are identified locating the voxels that satisfy

wm > w0 and |dm| < dv , (1)

where dv is the voxel size.
Aligning the sensor’s depth direction with the surface

normal, as shown in Figure 4, is key in enabling accurate
and high-quality scene reconstructions. With this in mind, we
identify poorly observed surface voxels, Ms, as

−om · nm > cos(θt) , (2)

where om is the observation direction of the camera for the
voxel and θt is the threshold angle to consider the observation
of the surface valid. We consider θt = 45◦ as a good indication
that the visibility of a surface is poor. During the initial
flight, the cameras are looking downward (i.e., −Z axis).
Thus, vertical and oblique surfaces are considered poorly
observed, while horizontal or low tilted surfaces are considered
as correctly observed.
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Fig. 4: The analysis of the initial map, visualized from a side view on the right with
two down-looking cameras, indicates the quality of the views of a building. An example
on a map obtained in the reconnaissance flight is shown on the left. Voxels on the left
are visualized as dashed lines on the right, with arrows indicating the estimated surface
normals. Red and green indicate poorly and well-captured surfaces, respectively, while
blue indicates accessible unknown areas, whose normals are estimated to point towards
free space.

The second step is the analysis of the unobserved voxels.
Out of all the unobserved voxels in the map, with weight equal
to w0, we find those that are accessible (i.e., can be observed).
Unobserved voxels are accessible if they are surrounded by
free space voxels, mf , defined by

wm > w0 and dm > dv. (3)

The accessible unobserved voxels, Mu, are then formalized
as the voxels, such that

∃mf ∈ N26(m), (4)

where N26(m) is the set of 26-connected neighbors, around
the voxel m. Finally, the set of voxels that need further
observations is defined as

Mt = Ms ∪Mu . (5)

C. Perception-aware clustering

This step performs a novel perception-aware clustering over
Mt. In particular, voxels get grouped together, such that can
be observed by a drone in a single efficient sweep trajectory
by considering the distribution of their normals in the cluster.
This clustering also aims at generating a natural partition of
the scene into a set of tasks that can be assigned to a team of
drones. In the following, we explain how the clustering works
and how sweep paths are generated from them.

The proposed clustering is based on the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN)
method [23]. The basic method groups voxels1 that are close
together in space, and identifies isolated voxels in low-density
regions as noise. It works by iteratively expanding clusters,
Ci, to neighboring voxels that fulfill the following density
condition:

|Nσ(pm)| > ϵ , (6)

where |Nσ(pm)| is the number of neighboring voxels in a
radius σ of the voxel’s center, pm, and ϵ is the minimum
number of neighbors to include the voxel in that cluster.

Our goal is to group regions observable from a similar point
of view (i.e., surfaces). Thus, we extend DBSCAN by adding
a second condition for expansion. This condition checks if the
normal of a candidate voxel, nm, lies within the distribution

1The original method refers to points.

Fig. 5: Sweep definition and refinement scheme (left). The gray area represents a surface
cluster. The dashed red line is the major eigenvector that will be covered by the sweep
(red solid line). The blue vector is the normal. An example in a real map is shown on
the right where the observation direction, ni, was adjusted to avoid an obstacle.

of normals in the cluster. The normals in Ms are estimated
from the gradient of distances in the ESDF initial map. The
normals of unobserved voxels are computed as the average
of all the directions that lead from pm to free space voxels
in N26(m) (Figure 4). We also smooth the estimated normals
using neighboring values to filter noise.

In particular, we focus on the distribution of the cosine
distance with respect to the mean normal of the cluster, nc,

dα(nm,nc) = 1− nm · nc

∥nm∥ ∥nc∥
. (7)

We then compute the average µd(Ci), and standard deviation
σd(Ci) of the distances from all the normals of the voxels in
the cluster to nc. The normal direction condition checks that
the distance of the normal between the candidate voxel and
the cluster’s distribution is sufficiently small,

dα(nm,nc) < min(µd(Ci) + 2σd(Ci), τ). (8)

where τ is a fixed value.
We identify µd(Ci)+2σd(Ci) as the relative tolerance to the

cluster’s distribution and τ as the absolute tolerance. The aim
of the relative tolerance is to adapt the expansion of the cluster
to the surface in question, e.g., allowing soft curvatures. On
the other hand, the absolute tolerance avoids the cluster to
expand through discontinuities such as edges.

Finally, we perform a merging step that fuses small clusters
with the most similar neighbor. If no neighbor is found, these
voxels are discarded.

Considering that each voxel cluster resembles a surface, a
sweep is defined as a linear trajectory that is orthogonal to
the normal of the cluster (Figure 5). Among all the possible
sweeps, we find the longest one through the inertia moments of
the cluster, li. Then, for each voxel in the cluster, we compute
the longest distance from the center, projected on this axis,

d∗i = max
m∈Ci

∣∣lTi (pm − c̄i)
∣∣ , (9)

where pm is the centroid of the voxel and c̄i the centroid of
the cluster. The extension of this distance from the centroid
of the cluster in both directions of li generates the path that
traverses the cluster through its length. We name both ends of
this path, the entrance points of the cluster.

In order to guarantee that the whole surface is visible with
a single sweep, we compute its height in the direction of the
axis perpendicular to the sweep direction

hi = li × ni. (10)
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The value of the height is computed in the same way as (9)
using the axis hi instead:

h∗
i = max

m∈Ci

∣∣hT
i (pm − c̄i)

∣∣ , (11)

where h∗
i if the half height of the cluster. Then, we use the

relationship between the field of view (FoV) angle of the
camera and h∗

i to compute the distance that is able to cover
the height of the cluster. The observation distance, do, along
the normal is computed as

do =
h∗
i

tan( FoV
2 )

(12)

Finally, if the sweep intersects an obstacle we perform a
rotation of the observation direction to refine it (Figure 5).

D. Global planner

In the next step, the objective is to compute high-level paths
for the drones to cover all the clusters. We propose to solve this
problem with an adaptation of the min-max Vehicle Routing
Problem (VRP).

Originally, this algorithm looks for optimal routes for a set
of agents, K, that visit once all the locations of a given set,
V . Denote by cij the cost to go from location i to location j,
which we consider is the same for all the agents, and define
X = {xk

ij}, for i, j ∈ V, and k ∈ K, the set of binary variables
that indicate whether agent k has traverse the route from i to
j or not. Then, the min-max VRP solves

min
X

max
k∈K

∑
i∈V

∑
j∈V

cijx
k
ij , s.t. (13a)

∑
k∈K

∑
i∈V

xk
ij = 1 ∀j ∈ V \ {0} (13b)

∑
k∈K

∑
j∈V

xk
ij = 1 ∀i ∈ V \ {0} (13c)

∑
k∈K

∑
i∈V

xk
i0 =

∑
j∈V

∑
k∈K

xk
0j = |K| (13d)

∑
i,j∈S

xk
i,j ≤ |S| − 1, ∀S ⊂ V \ {0}, S ̸= ∅ (13e)

xk
ij ∈ {0, 1} ∀i, j ∈ V (13f)

where (13a) is the cost function, which denotes the largest cost
among all the agents for a given assignment, constraints (13b)
and (13c) indicate that drones only visit each location once.
Constraints in (13d) impose the drones to start and end at
the initial point. Constraints (13e) are the sub-tour elimination
constraints. Finally, conditions (13f) impose binary conditions
on the decision variables.

In order to adapt the VRP to the clusters and their sweeps,
we propose a definition of the costs, cij , that considers them.
Given two clusters, i and j, we compute the path between
them, as the line that joins their closest entrance points with
distance, dij , if there are no obstacles. In case there are
obstacles, we consider the same path, but flying over the top
of the scene. This way we guarantee that all the clusters are

reachable from each other, but we favor assignments of the
nearby ones. Additionally, to account for the cost of covering
each cluster, we add the distance of the sweep to all the costs
with it as the destination. The distance of the sweep generated
for Ci is l∗i = 2d∗i , with d∗i defined in (9). Therefore, the cost
cij is defined as

cij = dij + l∗j . (14)

Lastly, to compute the solution of (13), we consider an im-
plementation with limited capacities. We simplify the objective
to minimize the total cost traveled by all the drones

min
X

∑
k∈K

∑
i∈V

∑
j∈V

cijx
k
ij , (15)

and we add a capacity constraint for each of them,∑
i∈V

∑
j∈V

cijx
k
ij < cmax ∀k ∈ K. (16)

Our solution searches for the minimum value of c∗max that
solves the problem using the bisection method.

E. Local planner

For the last step of the proposed pipeline, the local planner
by Zhou et al. [24] is used to plan in two stages: an initial
kinodynamic A∗ path search based on motion primitives finds
a safe, feasible and minimum-time initial path, and a B-spline
optimization generates smooth and collision-free trajectories
that use gradient information from the ESDF and dynamic
constraints.

In order to cover a surface efficiently and effectively, the
sweep direction needs to be orthogonal to the observation
vector. To enable safe and efficient navigation, while obtaining
high-quality scene observations, we decouple the problems of
navigation and observation. We assume that the observation
camera is mounted on an actuated gimbal, which is able to
set the yaw and pitch directions. A second sensor, such as a
laser ranger or a depth camera is used for navigation.

TABLE I: Execution times to complete a scene coverage mission. The reconnaissance
flight time, in parenthesis, is included in the total time. Ours (single) refers to our pipeline
using one drone, while Ours (multi) indicates the time taken by the longest flight of any
drone in a team (four in this case), indicating the end of the mission. For [2], we report
the time to reach the same extent of coverage achieved by each of our methods (Table III).
In larger maps, [2] is not able to achieve our coverage after one hour of execution, so
the total coverage by that time is reported. The ‘⋆’ indicates that the global planner only
assigned two drones to this map, as introducing more would not reduce the total time.

Method Bunker Wood
Bridge

Loarre
Castle Zurich

Kompis et
al. [2] (single) 859.71 s 897.08 s

>3600 s
[67.08%]

>3600 s
[13.91%]

Ours
(single)

491.91 s
(183.06 s)

331.16 s
(122.54 s)

1474.95 s
(329.88 s)

2027.88 s
(588.56 s)

Kompis et
al. [2] (multi) 214.43 s 405.98 s 1440.59 s

>3600 s
[60.49%]

Ours
(multi)

126.26 s
(42.04 s)

172.09⋆ s
(53.31 s)

433.74 s
(117.11 s)

741.07 s
(269.53 s)
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IV. EXPERIMENTS AND RESULTS

To assess the performance of the proposed method, the
pipeline is run on photo-realistic outdoor scenarios of varying
sizes and difficulty, namely on the Bunker, Wood Bridge,
Loarre Castle, and Zurich2 models visible in Figure 8. The
transfer of this simulation setup to real-world cases was proved
in previous work [21] [25]. The Gazebo RotorS simulator is
used with ground-truth odometry of the drones. During the
initial map construction, flying at a high altitude enables the
use of accurate RTK GPS systems with small odometry errors.
The uncertainty in the successive flights can be alleviated by
overestimating the observation distance and safety radius. As
we target our application to consumer platforms, problems
such as aerodynamics or other electrical and mechanical delays
are assumed to be solved by their system. The drones are
equipped with a monocular camera mounted on an actuated
gimbal that can rotate independently of the orientation of the
drone. Its resolution is 752× 480 and FoV is 80◦ × 55◦. The
drones’ linear and angular maximum velocity and acceleration
are set to 2 ms−1 and 0.9 ms−2, respectively, for fairness
with the compared system and to ensure safety at all times.
During the reconnaissance flight, the drones fly at a fixed
height over the model in a grid pattern with their cameras
looking downward. The voxel size used for the initial map
and planning is 0.2 (Bunker and Wood Bridge), 0.5 (Loarre)
and 0.7 (Zurich).

The parameters for the clustering step depend on the reso-
lution of the prior map (i.e., voxel size vs). We set ϵ = 10vs,
σ = 6 (Eq. (6)) and τ = 0.4. We also apply an inflation factor
over the coarse map of 20vs to the observation and safety
distances for the sweep generation. Due to computational
resources required to simulate several drones, the local paths
are executed by a single drone sequentially, which starts from
and comes back to the same initial point. The simulation runs
until all the local trajectories have been executed.

We run the experiments considering three different algo-
rithms. We name Ours (single) and Ours (multi) the solutions
obtained running our pipeline with one and four drones
respectively. In the multi version, we perform an ablation
study to show the difference in visual coverage obtained after
the reconnaissance flight and the successive flights resulting
from our pipeline. Even when our pipeline is not directly
comparable in terms of the sensor setup with other exploration
methods that use stereo pairs, the third method uses the
planning approach of Kompis et al. [2] for single and multiple
drones, which is among the state-of-the-art planners with
available implementation. In the version with multiple drones,
the environment is segmented equally among the drones. This
comparison is not intended to rank the two methods but to
showcase the potential advantages of the proposed planning
approach in terms of efficiency.

A. Planning efficiency

The times for the execution of the plan are shown in Table
I. The times for the reconnaissance flight and initial map

2Model provided by wingtra.com

construction with Voxblox are included in the total and shown
below. For the method of Kompis et al., we report the times
necessary to achieve the same coverage as our system.

The results for Ours (single) and Ours (multi) validate that
our setup can generalize to an arbitrary number of drones.
When using several drones instead of one, times are a fraction
of the number of drones with little overhead. In the case of
Wood bridge, the global planner assigned the tasks to only two
drones even if four were available. Due to the scene structure,
adding more drones would not reduce the time of the mission
as drones would have to return to the initial point. Compared
to Kompis et al., our method is able to completely cover the
maps faster in every case. For large maps (i.e., Loarre Castle
and Zurich), [2] is not able to cover the environment after
one hour of execution and we report the amount of coverage
obtained at that time.

There are two main reasons for this difference. Firstly, the
different approaches to drone dynamics in the planners. Stop-
and-go motions are necessary as the exploration process is
incremental. This limits the planning horizon of the system to a
local region. In their approach, the drone has to stop in order to
acquire each individual view and plan the next (see Figure 6).
In our case, the drone is able to keep moving while observing
a whole surface in a sweep. Notice that our system could
potentially use higher velocities and accelerations for large
trajectories in free space, as in the case of the reconnaissance
flight, further improving the planning efficiency. The second
reason for the time difference is that their planner revisits areas
in order to obtain thorough coverage, committing resources to
small regions with difficult accessibility. The reason for their
low coverage results in the Zurich map is explained by their
viewpoint proposal method, which leads to larger re-planning
times when the scale of the map grows.

We also report the time for the initial map processing. The
times for the analysis and clustering steps depend on the size
and resolution of the map. The global planning step depends
on the number of generated clusters and the number of agents.
We show the results in Table II in the smallest and biggest
maps: Bunker and Zurich. The time is always below one
minute which is negligible for the total time of the mission.

Fig. 6: Extract of the moving average for the velocity during the simulation in Loarre
Castle for Ours and [2]. While traditional methods stop to capture a view and plan the
next goal, our method is able to keep flying at higher speed.

B. Coverage and surface quality

Besides the efficiency of our planner, we have also assessed
that the coverage and the quality of the views are correct. The
images captured from the monocular cameras of the drones
have been used to generate 3D reconstructions of the scenes
using COLMAP. The reconstructed models are compared with
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TABLE II: Computation time for the different map processing steps: analysis, clustering
and global planner. Mean and standard deviation for 10 runs.

Bunker Zurich

Analysis - 2.22± 0.082 s 6.96± 1.05 s

Clustering - 1.83± 0.045 s 7.12± 0.297 s

Global
planner

Ours (single) 0.99± 0.053 s 15.43± 0.689 s

Ours (multi) 0.94± 0.064 s 17.10± 0.737 s

TABLE III: For each method, we report the RMSE of the reconstructions and the extent
of the coverage for a threshold of 0.1 meters at the completion time of the experiment
as reported in Table I. Recon. indicates the metrics from a reconstruction using only the
images captured during the reconnaissance flights.

Method Bunker Wood Bridge Loarre Castle Zurich

Kompis et
al. [2] (single)

0.085 m 0.068 m 0.049 m 0.074 m

75.6 % 55.63 % 42.58 % 9.13 %

Ours (single)
0.027 m 0.043 m 0.048 m 0.09 m

97.35 % 93.23 % 97.92 % 95.96 %

Kompis et
al. [2] (multi)

0.076 m 0.074 m 0.059 m 0.087 m

89.10 % 60.29 % 50.20 % 20.90 %

Recon.
(ablation)

0.04 m 0.039 m 0.063 m 0.147 m

84.75 % 62.93 % 88.54 % 75.34 %

Ours (multi)
0.026 m 0.039 m 0.043 m 0.086 m

96.36 % 92.37 % 98.64 % 97.34 %

Fig. 7: Comparison of the coverage quality after the reconnaissance flight (left) and
the successive flights (right). Occluded regions under the Bunker are not reconstructed
(up). In addition, even though vertical surfaces such as Loarre’s walls are covered, their
observation yields poor scene reconstructions (down).

the ground-truth (GT) virtual models. We consider that a point
in the GT surface is covered if the closest distance to a point
from the reconstructed mesh is below a threshold of 0.1m. Our
metric is the percentage of covered points in the ground-truth
mesh. We also measure the accuracy of the reconstruction as
the RMSE of the distances from the reconstructed model to
the ground truth mesh. While we are mainly interested in the
first two metrics, the accuracy indicates that our method can be
used to obtain accurate 3D reconstructions of the environment.
We also report the coverage, its quality, and the reconstruction
accuracy from the Voxblox generated mesh of the pipeline
in [2]. The voxel size for their reconstruction is the same
they use in their experiments, 0.1, which is the threshold used

for considering a point covered in our setup. The results are
reported in Table III. For Kompis et al., the reported value is
the coverage achieved by the completion time of our plan.

The reconnaissance flight (Recon.) is able to cover a large
amount of surface. However, the coverage quality is low, yield-
ing poor scene reconstructions (Figure 7). After the execution
of our pipeline, we obtain images that ensure good observation
of surfaces. We can see similar coverage for the case of single
and multi-drone approaches as the drones traverse similar
sweeps. Compared to Kompis et al., our system is able to
achieve more coverage in less time. Notice how the coverage
difference is increased with the size of the map. Qualitative
results are shown in Figure 8 for all the maps. It might be seen
that our pipeline misses some areas with difficult accessibility.
In return, it is able to cover the overall scene in a fraction
of the time. This demonstrates that a substantial amount of
information can be extracted from the map by planning more
efficiently and shows the advantage of using prior knowledge
about the scene structure for planning.

V. CONCLUSION

In order to improve the efficiency in large-scale deployments
of drones for visual coverage, this article proposes a multi-
stage planner that generates long linear trajectories (sweeps)
that observe a large amount of surface in a continuous motion.
We accomplish this by leveraging a prior coarse map to cluster
these surfaces and improve the posterior coverage trajectories.
This approach is generalized to an arbitrary number of drones,
managing the workload distribution between them in order
to minimize the completion time of the mission. Comparison
with alternative approaches to the exploration of scenes shows
the advantages of our pipeline for large scenarios, where the
overall coverage of the scene in a minimal amount of time is
necessary. We show that a single run of our pipeline is able
to obtain coverage of scenes faster and with great accuracy.

Future work will explore the integration of the proposed
pipeline in a real platform, including a mapping framework
to ensure safe local navigation and additional coordination
systems to deploy a team of autonomous drones in large-
scale environments. Besides, exploring the extension to a team
of heterogeneous aerial drones (i.e., fixed-wing UAVs for the
nadir flight) could improve even further the efficiency of the
system by allocating each to different task modalities.
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