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Abstract— Unmanned aerial vehicles combined with com-
puter vision systems, such as convolutional neural networks,
offer a flexible and affordable solution for terrain monitoring,
mapping, and detection tasks. However, a key challenge remains
the collection and annotation of training data for the given
sensors, application, and mission. We introduce an informative
path planning system that incorporates novelty estimation into
its objective function, based on research for uncertainty estima-
tion in deep learning. The system is designed for data collection
to reduce both the number of flights and of annotated images.
We evaluate the approach on real world terrain mapping
data and show significantly smaller collected training dataset
compared to standard lawnmower data collection techniques.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) offer cost-efficient, flex-
ible and automated delivery of high-quality sensing data in
various applications, e.g. search-and-rescue, inspection and
agricultural monitoring. Image sensors in particular are well
suited for UAV based sensing because of their low cost, size,
and power demand. Recent advances in computer vision and
deep learning enable automated analysis of the gathered data
and make the system applicable to a range of monitoring and
mapping tasks in large or hard-to-access environments.

In this work, we look into the problem of data collection
for environmental monitoring. Especially in mentioned appli-
cations like long-term agricultural monitoring, imagery can
change drastically over time and differ from the training data.
Cases of novelty require tedious data collection, annotation
and retraining, with two time-costly challenges: On the one
hand the flight time is limited due to the energy consumption
of the UAV, on the other hand the time investment for
manually annotating the large pool of acquired images is
huge. By flying over an area in a conventional predetermined
lawnmower-fashion, energy is wasted on gathering repetitive
and similar images that will not significantly improve the
segmentation and classification quality. We propose an in-
formative path planning (IPP) system that actively searches
for and gathers data different to the training distribution of
the available semantic segmenter.

Based on results from the recent ‘Fishyscapes’ bench-
mark for novelty detection in semantic segmentation [1],
we propose an IPP system that maximises the novelty of
the gathered images in a single flight mission. Given the
available resources, we reduce the number of flights and
annotated data, while achieving faster improvements of the
semantic segmentation.

This work was supported through funding by Hilti Group.

drone image novelty

Fig. 1: To collect useful training data for a semantic seg-
mentation network, our informative path planning algorithm
finds a path for the drone that increases the novelty of the
observed images. The novelty is evaluated in a patchwise
manner that additionally gives directional information from
the gradient over the heatmap. Brighter novelty is higher.
The planned path is marked in blue.

An illustration of our approach is given in figure 1. For
every new image captured by the UAV, we estimate the
novelty of the image and follow this information to high-
interest regions.

The contributions of this work are the following:
• We propose an IPP algorithm that uses novelty estima-

tion from deep learning as primary source of informa-
tion.

• We evaluate the proposed IPP solution and the novelty
estimation towards the problem of active learning.

II. RELATED WORK

Novelty detection or uncertainty estimation for deep learn-
ing models is a very active area of research. Uncertainty and
mistakes in prediction algorithms can come from noise in the
input, but also from differences between the training data and
the input. In our case, we are exclusively interested in the
second part, as we want to decrease the distance between
input and training distributions by gathering a broader range
of training data with our IPP setup.
Hendrycks et al. [2] give a comprehensive overview of the
problem and evaluate the baseline of the softmax output.
Bayesian Deep Learning [3, 4] estimates uncertainty from
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Fig. 2: Illustration of the path planning scenario. Left. The UAV is in between its mission to collect useful new training data.
The path is planned as a sequence of grid cells on the map. Right. The current image seen from the UAV is put through the
CNN to get a heatmap of patchwise novelty scores. The heatmap is then used to select the most promising next gridcell.

deep models whose outputs and weights are probability dis-
tributions. Different works compare the flow of data through
the network to the training data and estimate uncertainty as
deviation from the training distribution [5, 6]. [1] adapted
and evaluated these approaches towards novelty detection
in semantic segmentation. As a third direction of research,
learned representations of the input are reconstructed and
compared in input space [7, 8].

Active Sampling is known in machine learning as a
technique for data reduction to speed up training times. Wang
et al. [9] show a system that samples from training images
based on the softmax confidence. Gal et al. [10] develop
a similar system based on Bayesian Deep Learning, which
is more suited for novelty detection. Both systems focus on
reducing the expensive labelling and do not take into account
the problem of data acquisition.

Informative Path Planning has recently experienced
increasing interest for a variety of applications, such as
environmental monitoring [11–13], surveillance [14] and
inspection [15]. The aim is efficient continuous or discrete
data acquisition in complex environments using a mobile
robot, whose motions are constrained by its sensing and
mobility capabilities. Popular techniques include Partially
Observable Markov Decision Processes (POMDPs) [16] or
Gaussian Processes [17]. However, the UAV sensing scenario
represents an extreme case where only information about
past places in the trajectory is available, which makes path
planning for more than a few steps unfeasible and reduces
the applicability of the mentioned methods.
While they do not use novelty as input to a path planner,
Richter et al. [18] proposed one of the first path planning
systems with novelty detection based on deep learning. They
use reconstruction based novelty to safely switch between
a neural network-based obstacle avoidance controller and
a slower conservative planner. In our method, we directly
exploit the novelty information to steer the robot towards
more informative regions.

III. METHOD

A. Novelty Detection

Our novelty estimation approach follows results from [1, 5,
6] and uses density estimation in the feature space. In partic-

ular, we use kernel density estimation to produce patchwise
uncertainty estimates. Lower resolution feature vectors from
a convolutional neural network are compared to their nearest
neighbors from the training distribution. Novelty is here
defined as the average cosine distance to neighbors from the
training distribution, a metric that was shown to work well
in different scenarios in the aforementioned works. However,
we note that the proposed system setup is independent of
the underlying technique for novelty detection as long as it
produces pixel- or patchwise values.

Given a training set of images A, we extract embeddings
Zl = fl(A) at layer l from the segmentation network
and store them in a database. For a given input image a′

and embeddings z′l = fl(a
′), we then approximate the

probability density of the input image with respect to the
distribution of training data using a kernel density estimation
of z′l with respect to the k nearest neighbors in Zl. This can
be found through

D(z′) =

k−1∑
i=0

z′z(i)

|z′| |z(i)|
.

D(z′) is a patchwise uncertainty estimation of the current
input image. The size of the patches is dependent on the
layer l where the embeddings are extracted, i.e. usually the
resolution is 8 or 16 times smaller than the input image. An
example of the uncertainty estimation is shown in figure 1.

For our input image size, the above approach requires
64 nearest neighbor searches per input image and is there-
fore not feasible for real-time. However, it can be directly
switched out with flow-based density estimation as was very
recently shown in [1], which only requires a single pass
through a network.

B. Path Planning

The objective in our IPP problem is to find new, infor-
mative images for training. The difficulty of approaching
this problem is twofold. First, the information computed by
the novelty detection is available only in locations that have
already been visited by the UAV; second, the distribution
of novelty over the explorable space is unknown. In this
work, we adopt the assumption of spatial correlation, i.e.
while we do not pose any hypothesis on where to find novel
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Fig. 3: Example of the gradient propagation. The UAV came
from cell xt−1 and obtained an image in the center cell
xt, which is used to produce the shown novelty heatmap.
As the novelty of the adjacent cells is still unknown, we
infer information from the gradient (black arrow) of the
novelty heatmap ∇D(xt). A score is assigned to each of the
neighboring cells and is then substracted from the potential
field.

inputs, we assume that there are regions of connected novelty
cells scattered over the map, rather than an i.i.d. uniform
distribution.
Given a grid discretization of the world, the path-planning
problem is stated as active sampling from the adjacent cells
of the current position in the grid map. An illustration of the
problem is given in figure 2.

At each re-planning step, the following information is
available to the path planner:

• number of additional explorable cells (i.e. battery life);
• explored cells in the map;
• distances to the borders of the explorable world;
• average novelty score of the current cell image;
• gradient direction of the novelty score from the current

cell image.

We implement the path planning on basis of potential
fields, where each grid cell p on the map has an assigned
potential ϕ(p):

ϕ(p) = D(p) + penaltyborder(p) + penaltyvisited(p)

The novelty of a grid cell image D(p) is initialized
uniformly to a constant value for all unknown patches and
updated once a patch has been observed. penaltyborder(p)
increases the potential towards the border of the observable
world. This term is required only in simulated environments,
in order to avoid situations where the UAV gets stuck in
corners of the simulation environment. penaltyvisited(p) is
a constant penalty applied to cells that have already been
visited and therefore should be avoided.

Based on the defined potential field, the drone selects
one of the 4 adjacent grid cells to its current location xt

according to algorithm 1. The algorithm follows a scheme
of fast traversion of low-novelty areas and exhaustive explo-
ration of high-novelty areas. We distinguish 3 different cases,
depending on the novelty of position xt:

Algorithm 1 Selection of the next adjacent grid cell
1: t← 0
2: while enough energy to head home do
3: if surrounded by visited patches then
4: follow shortest path to non-visited patch
5: end if

6: update ϕ(xt) with observed novelty
7: ϕ̂(p)← ϕ(p) . temporary updates to ϕ

8: if D(xt) < α then . low novelty
. no updates to ϕ̂

9: end if

10: if α < D(xt) ≤ β then . medium novelty
11: ϕ̂(p)← ϕ̂(p)− f(p,∇D(xt))

. propagate novelty gradient, see fig. 3
12: end if

13: if β < D(xt) then . high novelty
14: ϕ̂(p)← ϕ̂(p)~ 1

9

[
1 1 1
1 1 1
1 1 1

]
. smooth potential

15: end if

16: if D(xt−1) > β and D(xt) < β then
. edge of informative region

17: ϕ̂(xstraight)← ϕ̂(xstraight) + penaltyforward
. don’t go forward, away from high novelty

18: end if

19: choose direction with lowest ϕ̂(p)
20: t← t+ 1
21: end while
22: return home

low novelty is defined as D(xt) ≤ α. These are images
uninteresting for training. The path planner tries to avoid
these regions and follows the gradient of the potential
field towards more informative areas.

medium novelty is defined by α < D(xt) ≤ β. It can
depict borders between different classes, as well as
borders to more informative areas. The path planner
takes the gradient of the current novelty heatmap as
additional information into account, as it might be
directed towards high novelty regions.

high novelty is defined by D(xt) > β. It identifies regions
that contain crucial data for training. Instead of follow-
ing the gradient, we found that it is more helpful to
explore larger areas of high-average novelty. In order
to encourage exploration, we smooth the potential field
to not disturb the path planner with local fluctuation
of the novelty estimation function. Moreover, we add
penaltyforward for moving out of high-novelty regions.

We set α and β based on the lower and upper quartile
thresholds on a validation set. The overall goal of the IPP
algorithm is to catch as many high-novelty cells in a mission



as possible.

IV. EVALUATION

We evaluate our approach on the remote sensing task of
the RIT18 [19] dataset. The dataset contains high-resolution
hyperspectral images of the same location for two points
in time, suitable as a training and validation dataset. For
both images, ground truth annotations are given. We use the
classes grass, tree, beach, and other. We simulate the UAV
flight by laying a grid over the image with cell size 128 ×
128 px.

The images gathered from each grid cell are segmented
using a fully convolutional network [20] with a VGG-16
encoder [21], in particular the implementation from [22]. We
use the embeddings from the conv5-1 layer and sample the
density over 20 nearest neighbors.

The experiment is set up as follows. The UAV is sent on
multiple missions, each time with the objective to gather new
training data. After each mission, we add the new images
together with annotations to the pool of training data, retrain
the semantic segmenter, and build a new kNN database.
The new semantic segmenter is then used for the novelty
estimation in the next mission.
At every iteration we evaluate the accuracy of the segmenter
on the whole map measured in mean intersection over union
(mIoU).

To evaluate our approach, we compare against two differ-
ent lawnmower baselines:
a - big lawnmower For the conventional approach flights

with the UAV are simulated in lawnmower fashion
across the whole site. A starting point near the edge
of the site is chosen and from there line after line, back
and forth across the map images are acquired until there
is no energy left and the (re-)training of the network is
performed.

b - small lawnmower For more diverse image acquisition
with less flights, the small-scale lawnmower approach
works by manually choosing different starting positions
spread out across the whole site. From each of the
starting positions a flight with a small-scale lawnmower
approach is executed which results in the collection
of imagery in a rectangle with a size depending on
the energy capacity of the UAV. After each flight, the
gathered image patches are then used for (re-)training.

c - informative path planning To test the developed IPP
system the same starting positions as the one used for
the small lawnmower approach are used. Instead of
predetermined paths, from the second flight on the IPP
system is used to guide the UAV autonomously until
the energy is depleted, then the vehicle heads back to
the starting position and the network is (re-)trained with
the acquired images.

The experimental results are shown in figure 4. The
experiment validates that our IPP system collects useful data
faster than the lawnmower based approaches. To reach a good
segmentation performance of mIoU ≥ 90%, only 3 UAV
missions were necessary. As a comparison, the prediction
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Fig. 4: Comparison of the mean IoU on the full map after
every retraining of the networks following the three different
approaches.

maps and generated paths after 3 missions of all methods
are shown in figure 5. In particular, we note that the novelty
plotted over the whole map after 3 missions in 5c highlights
the lake on the upper left as a region of high novelty,
which is also the only region that is wrongly classified. The
corresponding path shows that the IPP was aborted before
collecting more lake data due to energy constraints and went
back to the starting position.

V. DISCUSSION

In our experiments with the RIT18 dataset, we found that
one of the main differences among the evaluated path plan-
ners was the data balance of the different classes captured
in each mission, because the classes are geographically very
separated on the map. This makes the experiment in general
sensitive to the choice of starting positions for each mission.
Choosing positions in all 4 quadrants of the map came to
the advantage of the smaller lawnmower approach for the
particular dataset. It remains to test how our IPP framework
performs with a starting position fixed over several missions.
To disentangle the evaluation of our IPP system and the
novelty detection, we plan experiments on datasets with a
different class distribution, as well as experiments where we
exchange the novelty estimation to a randomly generated
heatmap.

On top of the points above, we restricted the path plan-
ning problem by the available information and the possible
actions. For other scenarios, the information available can
vary, e.g. it is also possible to have novelty maps similar to
the one on figure 5c from previous missions available. In
our experiments the height above ground was kept constant.
While informative path planning with variable height was ex-
plored in different works before, it remains subject of further
research how the height affects segmentation performance
and novelty estimation.

VI. CONCLUSION

In this work we present an IPP system to collect valuable
training data with a UAV. We show how to incorporate
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(a) The big lawnmower is started in the upper half of the map and
goes down row by row over the map.

path prediction

sand
tree
grass

other

(b) As a better comparison to the IPP experiment, we start small
lawnmower missions at different locations distributed over the
whole map. Each mission starts at one of the blue dots and executes
a rectangular pattern around this position.

path prediction novelty

(c) The first three missions with IPP. Note that the first mission
has no prior data available, cannot estimate novelty and therefore
falls back to the small lawnmower approach. For the second and
third path, low novelty cells are marked dark and medium novelty
cells are marked in light gray. On the right we show the novelty
corresponding to the prediction after the first three missions (higher
novelty is brighter). This information is not available to the planner
as novelty can only be evaluated for visited places.

Fig. 5: For each path planner, we show the observed grid
cells after three missions in blue (left) and the semantic
segmentation over the whole map, trained on the gathered
training data from the first three missions (center).

novelty estimation from deep learning into a path planning
objective and evaluate our system on a real world terrain
monitoring map. The results indicate a significantly faster
useful data acquisition with improved performance compared
to traditional lawnmower approaches.
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