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Abstract

Unmanned Aerial Vehicles (UAVs) are agile platforms that are used in robotics for
a wide range of tasks. However, due to their ability to perform fast flights, they
are challenging to track. In literature there exists a broad number of tracking algo-
rithms that allow to estimate the pose of an UAV by means of an external camera.
Generally these algorithms make use of a fixed camera, and therefore they loose
track of the UAV if it moves out of the field of view. A possible solution to this
issue is to allow the presence of a moving camera.

In this semester project, a system composed by a camera and a servo is considered.
In particular, a toolbox for the calibration of the camera-servo set-up is proposed
and analysed. First, the formalization of the problem is introduced. Then, the
pipeline of the overall calibration is explained and evaluated.

The proposed toolbox shows satisfactory performances, even when used in combi-
nation with algorithms for UAV pose estimation and tracking.
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θ Servo rotation angle

offset Distance between the servo and the camera

TAB Homogeneous transformation matrix mapping B → A

Reference systems indices

W World reference system

S Servo reference system

C Camera reference system
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Acronyms and Abbreviations
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Chapter 1

Introduction

In the recent years, the use of Unmanned Aerial Vehicles (UAV) has increased expo-
nentially. Thanks to their capacity of adapting to different settings and situations,
they have been largely employed in tasks such as safe-and-rescue missions or explo-
ration of unsafe environments.

However, the full autonomous flight of these robotic platforms has not been reached
yet. In order to increase the navigation capabilities, the research community has
focused on the development of algorithms and strategies that could make spacial
perception of the robots more robust. In literature there exists a huge amount
of works on the problem of Simultaneous Localization and Mapping (SLAM) and,
even tough the solutions that have been proposed through the years are various and
valid, a lack of robustness still affects the state of the art.

Furthermore, UAV limited computational power, in addition to low payload capaci-
ties, creates significant issues and challenges. The number and the types of sensors,
combined with the algorithms for on-line SLAM, become a fundamental choice that
has direct consequences on the performances in the navigation task.
So far, the SLAM approaches with on-board sensing and computation have ob-
tained good results in controlled laboratory environments, but the performances in
real scenarios are worse. In fact, UAVs are agile platforms that are capable of fast
movements. Therefore, due to the high speeds, the control and the tracking of a
flying UAV are challenging, and the existing systems are not ready to operate fully
autonomously in the real environments.

In this semester project, the focus is on the development of a set-up that could
allow better tracking performances when the pose of an UAV is obtained by means
of an external camera. Actually, even if various pose tracking algorithms have been
developed and successfully proved even in outdoor applications, the problem of a
continuous tracking of a flying UAV still persists.
More precisely, the ultimate goal of the project is to create a set-up that allows to
track an UAV from another UAV. To solve this problem, a system composed by a
servo and a camera is adopted, as shown in figure 1.1.
With the proper choice of the servo and the correct implementation of visual ser-
voing algorithms, the camera could be able to follow the UAV to track during its
flight. However, before reaching this step, a proper calibration of the Pan Camera,
composed by the servo and the single camera, must be performed.

This report focuses on the calibration and the set-up of the camera-servo system
and shows the impact of the proposed calibration method on an already existing

1
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UAV pose estimation pipeline.

First of all, the related works and the mathematical model are presented. Then,
the pipeline of the toolbox for the calibration is explained, presenting the results
coming from both the simulation of the process and the calibration of the real set-
up. Finally, the toolbox is evaluated and then the performances in a real tracking
scenario are analysed.

Figure 1.1: The tracking problem: here the focus is on the system servo-camera



Chapter 2

Related works

2.1 The Servo-Camera model

The system composed by a camera and a servo can be modelled as a Pan Camera.
In literature, the problem of calibrating cameras that are able to rotate has been
widely studied taking in consideration also the zooming property (Pan-Tilt-Zoom
Camera - [1] [2]). Generally, Pan-Tilt-Zoom Cameras are used as components in
wide-area surveillance systems. However, this project focuses on the applications
in the robotic field, in particular for UAV pose tracking. The movement is limited
to only one degree of freedom, without considering the presence of the zoom.

Many of the existing models of Pan Cameras assume a rather simple geometric
motion, in which the axis of rotation is aligned with the camera imaging optics [3]
[4]. Moreover, the assumption that the centre of projection is coincident with the
centre of rotation holds. However, this approach will lead to extremely bad results
when cheap hardware is used due to the lack of careful engineering.
More complex models have been proposed, but in this report the focus will be on a
more general approach with an intermediate level of complexity [5].

Another important aspect of the existing camera calibration algorithms is the em-
ployment of relatively small calibration patterns. While small targets are appropri-
ate for stationary cameras, they produce poor results when applied to cameras that
can perform rotations. As in [6], the target is build in a way that covers an area as
wide as possible. To obtain a high quality calibration, the pattern fills the working
volume spanned by the camera as it is moved by the servo. More precisely, here the
calibration target is built using AprilTags (Appendix A - [7] [8]).

2.2 The UAV pose estimation algorithm

In literature there exists a wide range of different solutions for the UAV pose esti-
mation problem. With the increasing need for accurate pose tracking, many com-
mercial motion tracking systems have been successfully developed. Vicon and Op-
tiTrack are the most widely used, since they are able to estimate the pose with high
accuracy and at high frame rate.

More simplistic approaches that make use of passive planar marker also exists, such
as AprilTags [7], while a more versatile solution makes use of a constellation of
infra-red LEDs [9]. The advantage of the second solution is that these markers are
detectable under different illumination conditions. The pose of the UAV can be

3



Chapter 2. Related works 4

obtained by correlating the prior knowledge of the marker disposition and their de-
tection in the image. This problem is generally solved using the Perspective-n-Point
formulation (PnP) [10].

The tracking algorithm that has been employed in this project is described in [11],
developed by Marco Moos at Vision For Robotics Lab V4RL, ETH Zurich.
This solution presents numerous advantages. It makes use of a monocular external
camera, enabling multi-hypothesis tracking using P3P formulation and a Particle
Filter. This method achieves very fast and accurate pose estimation and an in-
creased robustness against false detections and occlusions with respect to other
existing algorithms.
From now on, when a reference about the tracking algorithm is made, it implicitly
indicates Marco Moos’ pipeline. Moreover, the superscript Moos in the transforma-
tions computations is used for more clarity.



Chapter 3

Methodology

3.1 Hardware set-up

The system to calibrate is composed by a servo HiTech HS-485HB (figure 3.1), ca-
pable of rotations up to 180 degree with a resolution of 1 degree, and a monochrome
BlueFox2 Camera from MatrixVision1. To obtain the intrinsics of the camera, a
calibration with Kalibr [12] [13] [14] has been performed.

Figure 3.1: The servo used
in this project

Using a monochrome camera and a commercial servo
keeps the hardware set-up simple and cheap. Servos are
small rotary actuators and generally they are used in
radio controlled models and in small-scale robotic ap-
plications; therefore generally their price is low. The
typical servo mechanism consists of small electric motor
driving a train of reduction gears.
In our experiments, the servo was controlled with an
Arduino UNO board. The circuit is composed by two
buttons, which can rotate the servo clockwise or counter
clockwise. The connections are sketched in figure 3.2,
while figure 3.3 shows the complete set-up camera and
servo.

Figure 3.2: Arduino UNO sketch
Figure 3.3: The complete system
camera-servo

1www.matrix-vision.com
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3.2 Problem formulation

The ultimate goal of the overall project consists of the calibration of the system
composed by the servo and the camera of figure 3.3. To fulfil the task, the pose
of the servo TWS and an accurate transformation TSC between the camera and the
servo have to be retrieved for different servo rotation angles. The rotation occurs
about the axis of the servo and it is indicated with θ.
Moreover, this report concentrates only on the pan movement of the camera, with-
out considering the tilt.

The calibration pipeline decomposes the camera poses TWC found at different servo
angular positions into two components. The first one is the pose of the servo TWS ,
while the second one is the transformation TSC that links the camera to the servo
reference system as a function of θ and the offset between the camera and the
servo:

TSC = TSC(θ, offset) (3.1)

Figure 3.4: The scheme of the system servo-camera and the input/output of the calibration
process

A simple scheme of the system can be found in Figure 3.4. The different colours
of the camera indicates the different positions that it assumes for different angular
positions of the servo. In the same figure, the overall input/output flow of the
calibration process is represented.

3.3 The analytical model

To describe the transformation TSC as a function TSC(θ, offset), a proper math-
ematical description of the Pan Camera is needed.
Previous researches have used a rather simplified model, where pan movements are
modelled as ideal rotations around the origin, followed by a perspective camera
transformation. The overall process can be easily described as a sequence of matrix
multiplications:

uv
w

 = C Rpan


x
y
z
1

 (3.2)
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where
[
x y z 1

]T
is the 3D point in homogeneous world coordinates. The

rotations are expressed trough the homogeneous matrix Rpan ∈ R4×4, while C ∈
R3×4 is the camera projection matrix. The computation returns the image plane

coordinates
[
u/w v/w

]T
where the point is observed.

This model works fine for ideal Pan Cameras where the centre of projection coincides
with the centre of rotation, but generally this assumption does not hold in reality.
When a Pan Camera is built, it is very hard to check that the axis of rotation
intersects the optical centre. Therefore, an improved Pan Camera model is needed.

Figure 3.5: The rotation of the camera about the pan axis

In order to properly describe the system, a new parameter must be included in the
model to get a better description of the camera geometry. As figure 3.5 shows, pan
rotations can happen about any arbitrary axis in the space; the image plane and
the optics rotate rigidly about this axis. The model can be formulated as:

uv
w

 = C Tpan(offset) Rpan(θ) T−1
pan(offset)


x
y
z
1

 (3.3)

where Rpan ∈ R4×4 is the homogeneous rotation matrix about the pan axis, while
Tpan ∈ R4×4 is the homogeneous translation matrix that accounts for the offset
between the origin and the rotation axis.

This model can be applied in order to describe TSC as a function of the angle of
rotation θ and of the offset, as suggested in equation 3.1. Therefore, to calibrate
the system servo-camera, the transformation mapping from the camera to the servo
reference frame can be written as follows:

TSC(θ, offset) = Tpan(offset) Rpan(θ) T−1
pan(offset) (3.4)

Equation 3.4 describes exactly a rotation θ that is performed at a distance offset
from the pan rotation axis.
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3.4 Similarity to the Hand-eye calibration

The calibration idea that has been introduced presents many similarities to the
Hand-Eye calibration problem. In its classical formulation, the goal is to recover
the transformations linking the gripper of the robotic arm to the camera and the
robot base reference to the world coordinate system. These mappings are indicated
with X and Z in figure 3.6 respectively.

Figure 3.6: The Hand-Eye classical formulation - image taken from [15]

The calibration of the Pan Camera presents the same issues, but it focuses just on
one of the two target transformations. In particular, the gripper is substituted by
the servo and the overall process aims at finding the transformation between the
servo and the camera.



Chapter 4

Toolbox pipeline

4.1 Introduction

In the previous section the calibration problem to solve has been introduced. Now
the focus is on the pipeline of the complete calibration process. The proposed
solution is schematically shown in figure 4.1. The camera is assumed intrinsically
calibrated.

Figure 4.1: The pipeline of the calibration

The basic concept of the process is fairly simple.
The first step consists of the creation of a 3D point map, which represents the target
needed to perform the camera 2D-3D calibration at each rotation step.
Once the position of the 3D points is known, the servo starts rotating and moves to
the angular position θi for the ith rotation. The camera pose is obtained from the
2D-3D points correspondences for each rotation step by solving a PnP problem as
described in [10]. This process has to be repeated for all the possible servo rotations.
Ideally, the range of rotation should be as wide as possible, in order to increase the
accuracy of the method. As a reference, for our experiments the servo rotated for
its full range of 180 degree. Furthermore, it must be considered that the amount of

9
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allowed rotation is directly affected by the calibration target dimension and by the
relative distance camera-target.
The servo position can be found by interpolating the different camera positions
found for each rotation step, while the initial orientation of its reference system is
arbitrary, since there are no constraints.
The last step of the pipeline consists of the optimization of the servo pose, of the
angles of rotation θi for i = 1, ..., n and of the offset between the servo and the
camera.

This calibration procedure has been tested both in simulation and in real world.
The process is the same for both situations, with the exception of the 3D point map
creation. In the following each step is explained in more details, while at the end
of the chapter a comparison between the results from the simulation and the real
system calibration is presented.

4.2 The toolbox pipeline step-by-step

4.2.1 3D point map

The creation of the 3D point map is crucial for a successful calibration. In a simu-
lated environment the position of the 3D points is arbitrary and a dense map can
be easily created. However, when the calibration is performed in a real scenario,
this step introduces several difficulties.

The first approach made use of chessboards, in a typical camera calibration fashion.
As it is shown in figure 4.2, two different types of chessboards have been used.
However, due to the small size of the target and the limited distance between the
camera and the target, the calibration results were terribly poor. Plus, since the
implementation used OpenCV functions in order to detect the grids, both of the
targets needed to be in full sight of the camera, limiting the servo rotation strongly.
In order to avoid such constraint, the two chessboards were substituted by AprilTags
chessboards (Appendix A - figure 4.3), which allowed to have partial detections in
the image. Even though the amount of allowed rotation of the servo increased with
respect to the previous approach, the targets were still too small and the returned
numerical results were again not satisfactory.

Figure 4.2: Chessboard and asymmetric cir-
cles grid with detections

Figure 4.3: AprilTag chessboards with detec-
tions

Therefore, a solution that could allow larger servo rotations with a wider 3D point
map was needed. The adopted solution involves again the use of AprilTags, but the
overall process is completely different from the previous approaches.
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To create the point map, a complete family of tags is attached to the walls (fig-
ure 4.4); the 3D points that constitute the calibration target are the four corners of
each tag. Thus, to calibrate the system properly, it is necessary that the AprilTags
cover a working volume as wide as possible. An example of tag detections in one
frame is shown in figure 4.5.

Figure 4.4: Set-up of the tags for point map creation

Figure 4.5: The detections of the AprilTags for one frame

However, each tag has its own coordinate system; therefore, to express the points in
a common reference frame, an algorithm able to find the transformations mapping
from tag to world coordinates is needed. The basic concept for the concatenation
of the transformations is shown in figure 4.6. The idea is to capture different
images of the environment with a hand-held camera moving in the space and then
concatenating the transformations TC,Tagi and TW,C to find TW,Tagi .

First of all, the world reference frame must be located. The easiest choice is to
make it coincide with the reference system of one of the tags (called reference tag).
In particular, the first image of the dataset must contain the reference tag to have
a proper initialization. For each frame that has been captured, the transformation
TTagi,C between the camera and the ith tag in the image can be found by solving a
PnP problem.
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Figure 4.6: Transformation concatenation for the creation of the point map. C represents the
camera, while W is the world reference frame

Then, to express the four corners of the ith tag in world coordinates, the transfor-
mation linking the ith reference system to the world must be found. There are two
possible situation for this concatenation, depending on whether the reference tag is
present in the image or not.

If the reference tag is visible, as in figure 4.7, the transformation between the ref-
erence and all the other tags can be obtained directly:

TW,Tagi = TW,C T−1
Tagi,C

(4.1)

where W is the world reference frame and C is the camera.

Figure 4.7: Situation 1 - the reference tag is present in the image

If the reference is missing, then to obtain TW,Tagi the transformation TTagi,C must
be multiplied by TTagj ,Tagi , where Tagj is another tag in the image whose transfor-
mation TW,Tagj is known. This situation is depicted in figure 4.8. In order to make
the procedure work, small movements of the camera between consecutive frames
are assumed. The concatenation of the transformations is as follows:

TW,Tagi = TW,Tagj TTagj ,C T−1
Tagi,C

(4.2)
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Figure 4.8: Situation 2 - the reference tag is missing in the image. Here, tag number 1 has
already been localized in the world reference system

Once all the mappings between all the tags and the reference are known by using
equation 4.1 and equation 4.2, the 3D point map can be built. Since the positions
of the corners of the tag in the local reference frame of each tag are known, their
positions in world coordinates can be easily retrieved:

WPj = TW,Tagi Tagi P̃j for j = 1, 2, 3, 4 (4.3)

where Tagi P̃j is the jth corner of the tag in the local reference frame expressed in
homogeneous coordinates.

The overall procedure is summarized in Algorithm 1. To increase the robustness of
the process, only frames with at least four tags detections are processed in order to
make the concatenation process more reliable. Moreover, the transformations are
concatenated as described in equations 4.1 and 4.2 only if the average re-projection
error for the computation of TTagi,C in the current frame is below a threshold τ
defined by the user. In our experiments, τ was set to 2 pixel.

The procedure that has been described so far returns a first guess of the point map,
which is then refined by bundle adjustment. The goal is the minimization of the
re-projection error by solving a non-linear least squares optimization problem using
Levenberg–Marquardt algorithm.

(P ∗
1,...,n, T

∗
WC1,...,Nf

) = arg min
P1,...,n, TWC1,...,Nf

Nf∑
i=0

Ni
obs∑
j=0

||C(TWCi , P1,...,n)−mi
j,2D||2

(4.4)
The minimization problem can be formulated as in equation 4.4, where:

� n is the number of 3D points;
� Nf is the number of frames;
� C(TW,Ci , P1,...,n) is the reprojection model;
� TW,Ci the camera pose in the ith frame;
� N i

obs the number of 2D observations mi
j,2D in the ith frame

The optimized point map is shown in figure 4.9.
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Algorithm 1: the creation of the point map

Data: Images of the environment
Result: First guess 3D point map

1 initialize database transformations;
2 forall images do
3 detect AprilTags;
4 if number of tags ≥ 4 then
5 for i = 1 to number of detected tags do
6 find TTagi,C ;
7 if reprojection error ≤ τ then
8 if reference tag is present then
9 TW,Tagi = TW,C T−1

Tagi,C
;

10 save TW,Tagi in the database;

11 else
12 search detections for tags already localized;
13 if found localized tag Tagj then
14 TW,Tagi = TW,Tagj TTagj ,C T−1

Tagi,C
;

15 save TW,Tagi in the database;

16 else
17 discard image;
18 end

19 end

20 else
21 discard image;
22 end

23 end

24 end

25 end

Figure 4.9: The point map after bundle adjustment with the camera trajectory



15 4.2. The toolbox pipeline step-by-step

4.2.2 Servo rotation and camera calibration

After having computed a refined 3D point map, the system servo-camera is used.
Ideally, the servo should be able to rotate for its full range in order to obtain more
accurate results from the calibration.
This step is fairly simple. The servo starts rotating and it moves towards the new
angular position. The rotation angle is indicated with θ, which is the absolute angle
measured from the reference position set at 0 degree.

For each rotation step, the camera pose can be found by solving a PnP problem.
Even though the 3D points are known with high accuracy, the solution found by
solving the 2D-3D correspondences problem may be inaccurate due to external fac-
tors, such as illumination conditions or failure in the AprilTags detections. There-
fore, only the camera poses that can be found with an average re-projection error
in the current frame lower than an user-defined threshold τrot are saved. For our
experiments, τrot was set to 4 pixel.
For the hardware and its set-up, refer to Section 3.1.

4.2.3 Servo pose

The servo position can be directly obtained from the camera positions. Ideally,
the camera should move along a circumference, therefore the servo position should
coincide with its centre. In order to find it, various step must be followed.

1. Find least squares fitting plane for the camera positions;
2. Project the camera positions on the plane;
3. Fit a circumference through the projected camera positions and find its centre.

Figure 4.10: The interpolation process

The process is depicted in figure 4.10.
The different camera positions in world coordinates are indicated with pi ∈ R3 i =
1, ..., N and they can be expressed in the matrix form

P =


pT1
pT2
...
pTN

 ∈ RN×3

The computation of the least squares plane is fairly simple. The first step consists
of the computation of sample covariance matrix Σ:

Σ =
1

N − 1
(P − µ)T (P − µ)
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where µ ∈ R3 is the mean of the camera positions:

µ =
1

N

N∑
i=0

pi

The normal to the plane n can be found by using the Singular Value Decomposition
of Σ.

USV T = Σ

The unit norm n corresponds to the third column of U . Since n is known, the plane
can be written as

ax+ by + cz = d

where a, b and c are the entries of n. Instead, d is the intercept of the plane that
can found by computing the dot product nTµ, since the mean µ belongs to the
fitted plane.
Once the plane is known, each 3D camera position pi = [xc, yc, zc]

T can be projected
onto it: 

xprojc = xc − aaxc+byc+czc+d
a2+b2+c2

yprojc = yc − baxc+byc+czc+d
a2+b2+c2

zprojc = zc − caxc+byc+czc+d
a2+b2+c2

The servo position can be found by fitting a circumference through the projected
points and computing its centre [xcentre ycentre zcentre]

T .

Differently from the position, the initial servo orientation is not subjected to any
constraints; therefore it is arbitrary. For the sake of simplicity, it is assumed that
the initial orientation of the servo reference frame is aligned with the one of the
camera in the reference position, with additional rotations of 180 degree about the
z axis and of -90 degree about the x axis, as shown in figure 4.11.

Figure 4.11: The initial relative orientation of the servo S and the camera C reference systems

4.2.4 Optimization

The last step of the toolbox pipeline is the optimization.

(T ∗
WS , θ

∗
1,...,n, offset

∗) = arg min
TWS ,θ1,...,n,offset

Nframes∑
i=0

Ni
obs∑
j=0

||Cpan(TWS , θ1,...,n, offset)−mi
j,2D||2

(4.5)
The problem to solve is again a minimization of the re-projection error and it can
be formulated as in the equation 4.5 where:

� Nf is the number of frames, coincident with the number of rotation steps;
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� Cpan(TWS , θ1,...,n, offset) is the re-projection model that takes into account
the analytical model of the Pan Camera described in equation 3.4;

� N i
obs the number of 2D observations mi

j,2D in the ith frame.

By solving the minimization problem, the optimized servo pose T ∗
WS can be recov-

ered. Plus, from the optimized angles of rotations θ∗1,...,n and the offset∗ between
the camera and the servo it is possible to compute the transformations T ∗

SC following
the formulation described in Section 3.3:

T ∗
SC(θ∗, offset∗) = Tpan(offset∗) Rpan(θ∗) T−1

pan(offset∗) (4.6)

4.3 The simulation

Before being applied to real set-up, the pipeline has been tested in simulation. The
process is shown in figure 4.1 with the exception of the point map creation. Since
the simulated calibration is performed in an arbitrary environment, the 3D points
can be easily located by the user. In our experiments, the point map was constituted
by three walls as in figure 4.12. On each wall, 16 7-by-7 grids were placed. The
colours of the walls do not have any particular meaning; they are used in order to
make the 3D representation of the point map more clear to the reader.

Figure 4.12: The environment of the simulation

The simulation was built to understand what the expected performances of the
toolbox could be, depending on the servo resolution. Therefore, in order to create
a simulation that could resemble reality as close as possible, the servo rotation was
corrupted by a 0 mean Gaussian noise N (0, σ2). In particular, the noise variance
σ2 was chosen depending on the servo resolution that was currently tested (table
4.1).

The results of the simulation are shown in figure 4.13, where the average re-
projection error is reported as a function of the servo angular position (the x-axis is
discretized with a step of 10 degree for a better representation). The results shown
in the plot are the mean values of 50 runs of the simulation.
As expected, as the servo resolution deteriorates (i.e. higher rotation step), the



Chapter 4. Toolbox pipeline 18

error increases. Plus, the minimum error is achieved at the reference position at 0
degree. As the servo moves, the error tends to increase. However, the re-projection
error remains in an acceptable range for smaller servo resolution.

Servo resolution [deg] σ2 [deg2]
0.5 0.1
1.0 0.2
2.0 0.4
5.0 1.0
10.0 2.0

Table 4.1: The noise variance σ2 depending on the servo resolution

Figure 4.13: The error of the simulation for different servo resolutions in different servo positions

4.4 The real set-up calibration

In order to asses the performances of the calibration toolbox on the real set-up, the
average re-projection error per frame has been plotted against the servo rotation
angle in figure 4.14. Once again, the error is reported only for a discretization step
of 10 degree for a clearer representation.
Once again, as the servo moves away from the reference position at 0 degree, the

error increases. Plus, differently from the simulation, the creation of the calibration
target is not ideal, therefore a new source of error is introduced.
However, the impact of the 3D point map evaluation should be limited on the overall
performances. The process of capturing the images for the creation of the point map
is simple and can be completed efficiently even by a non-expert user.

4.5 Comparison of the results

The results of the simulation and of the real case are compared to get a better feeling
of the performances of the toolbox. As figure 4.15 shows, the performance of the
toolbox in the real world is worse than the one of the simulation. The real set-up
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Figure 4.14: The error of the calibration in the real scenario

behaviour is indicated by the black line. In particular, a qualitative comparison
reveals that the real servo (with nominal resolution 1 degree) has a behaviour close
to the simulated servo with resolution 10 degree.
The degradation of the results is due to various effects that were not taken into
account in the simulation. For instance, the link between the camera and servo is
not ideal and therefore there are several unmodelled relative movements between
the servo and the camera. Plus, the servo is not perfectly attached to the ground,
which causes some backslash during the rotations.
Another important effect is the non-alignment of the camera with respect to the
centre of rotation. Due to inaccuracies when the set-up was built, the offset between
the camera and the servo is not perfectly radial.

Figure 4.15: Comparison of the simulation error against the real scenario performance
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The comparison between the simulation and the real world scenario can give a rough
insight of the toolbox performances. In the next section, the toolbox is evaluated
more rigorously. Moreover, its performances when it is used in combination with
an UAV pose tracking framework are analysed.



Chapter 5

Toolbox evaluation

In this section, the evaluation of the toolbox is presented. In particular, two different
evaluations have been performed:

1. Toolbox versus Kalibr

2. Toolbox in a maker tracking framework

In the following, the evaluation set-up is first described; then the procedure and the
results of the evaluations are shown.

5.1 Evaluation set-up

The hardware set-up used for the evaluation of the toolbox consists of two cameras,
one fixed and one able to move. In the experiments, the fixed camera was camera
1 of the VI-Sensor, while to second one is the BlueFox2 Camera mounted on the
servo (figure 5.1).

Figure 5.1: The hardware set-up for the evaluation

The world reference frame is assumed to be coincident with the coordinate system
of the VI-Sensor. Therefore, the reference system of the fixed camera is indicated
with W , while the BlueFox2 is represented with b. Moreover, the system servo S -
BlueFox2 Camera b is assumed calibrated with the toolbox before the start of the
evaluation process.
Finally, a total of 5 datasets have been collected for both the evaluations. Each
dataset is composed by 15 different servo rotations in the range [75 - 117 degree]
with a step rotation of 3 degree.

21
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5.2 Toolbox versus Kalibr

5.2.1 Procedure

The first evaluation consists of the comparison between the results obtained from
the toolbox and the ones returned by Kalibr.

Figure 5.2: The reference position of the
two cameras

Figure 5.3: Rotated position of the two
cameras

The first step of the evaluation is the choice of the reference position of the BlueFox2
Camera with respect to the VI-Sensor. For both the evaluations, it is chosen to be
at the servo angular position θref equal to 90 degree, as shown in figure 5.2. In this
position, a stereo calibration of the two cameras is performed using Kalibr. With
this approach, the transformation mapping from the reference system of the moving
camera to the fixed one can be retrieved easily. Such transformation is indicated
with TKalibrWb (θref ).

The idea that stands behind the evaluation is fairly simple. Once TKalibrWb (θref )
is known, it is possible to compare the transformations TKalibrWb (θ) and TToolboxWb (θ)
mapping from the BlueFox2 Camera to the VI-Sensor coordinate system for a given
angular position θ of the servo (figure 5.3).

TKalibrWb (θ) can be obtained directly from the stereo calibration of the system, while
TToolboxWb (θ) can be computed by concatenating the transformation returned by the
toolbox. The concatenation proceeds as follows:

TToolboxWb (θ) = TKalibrWb (θref ) (TToolboxSb (θref ))−1 TToolboxSb (θ)

where TToolboxSb (θref ) and TToolboxSb (θ) can be obtained from the calibration of the
system servo-camera.

The numerical evaluation is performed by computing a homogeneous error matrix
E(θ):

E(θ) = TKalibrWb (θ) (TToolboxWb (θ))−1

Ideally, E(θ) is an identity matrix. Obviously, due to the numerous sources of error
that have already been described, it is completely different from the ideal case.
The basic concept of this evaluation is the comparison of the position and orienta-
tion of the BlueFox2 Camera with respect to the VI-Sensor as they are computed
with two different tools. Thus, E(θ) contains the information about the amount
of error in both orientation and position calculation of the proposed toolbox with
respect to Kalibr.
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Figure 5.4: The data for the first evaluation from the Bluefox2 camera (left) and the camera 1
of the VI-Sensor (right)

The data collection

To perform the stereo calibration with Kalibr, a series of data such as the ones
in figure 5.4 has been collected using a chessboard. The image on the left is the
view from the BlueFox2 camera, while the one on the right is the image captured
by camera 1 of the VI-Sensor.
Since the two cameras were not synchronized initially, the recorded streams of
images had to be preprocessed before being used for the comparison computation.
In order to synchronize the images, the BlueFox2 Camera recorded at 65 FPS,
while the VI-Sensor used a much lower frame rate, nominally 2 FPS. Once the first
asynchronous data have been collected, the synchronization of the streams could be
easily completed by comparing the timestamps of all the images. The process was
automated by using a simple Python script.
The process was repeated for each servo angular position θ in the specified range.

5.2.2 Results

The homogeneous error matrix E(θ) was calculated for each servo rotation for all
the dataset. Then, for each E(θ) computation, the error could be extracted. In
particular, the absolute error in both position and orientation is analysed.

Absolute error in orientation

The amount of error in orientation can be obtained by extracting the error rotation
matrix R(θ) ∈ R3×3 from E(θ) and then computing the three rotation angles roll,
pan and tilt. It is possible to find the absolute error on roll, pan and tilt angles in
the servo position θ as follows:

|errorroll(θ)| = |atan2(R23(θ), R13(θ))|

|errorpan(θ)| = |atan2(
√
R13(θ)2 +R23(θ)2, R33(θ))|

|errortilt(θ)| = |atan2(R32(θ),−R31(θ))|

This process is repeated for each servo angular position θ and for each of the 5
datasets. The absolute error in all the components can be averaged over the datasets
and then represented as a function of θ. The results are shown in figure 5.5.

As expected, as the servo moves from the reference position, the error increases in
roll, pan and tilt. Moreover, the largest amount of error is present on the pan, since
it is directly affected by the servo rotation. The smallest values are on the tilt, while
the roll presents intermediate errors. The misalignment of the two cameras plays a
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crucial role. Since the BlueFox2 Camera and the VI-Sensor are not perfectly aligned,
the VI-Sensor sees every rotation of the system servo-camera as the composition of
roll and pan. However, the errors remain in an acceptable range. Slightly worse
results are obtained by the pan for servo positions in the range [75-90] degree, where
the maximum peak (∼3 degree) is reached.

Figure 5.5: The absolute error in orientation

Absolute error in position

The same kind of evaluation can be done for the position error. It is possible to
extract the translational error vector t(θ) from E(θ) and average the absolute values
of the errors on x, y and z over the datasets. The results are shown in Figure 5.6,
where the averaged error is presented as a function of the angular position of the
servo. Once again, as the servo moves away from the reference position, the error
increases. In this case, the error has similar values among the three components x,

Figure 5.6: The absolute error in position
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y and z. As in the case of the orientation, the reason of such a decomposition in
the three directions is due to the misalignement of the two cameras.
To get a better feeling of the results, the average distance of between the two cameras
over the datasets is about 13 cm. Here the error reaches a peak of 1.85cm on the x
and y, but it remains constrained in an acceptable range for all the rotation angles
θ.

5.3 Toolbox in a maker tracking framework

5.3.1 Procedure

The second evaluation is based on the performances of the toolbox when it is em-
ployed in combination with a UAV pose tracking algorithm. As explained in Section
2.2, the algorithm for pose tracking that has been utilized is the one developed by
Marco Moos. Thus, every transformation that is obtained by this pipeline is indi-
cated with Moos as superscript.

Figure 5.7: The data for the second evaluation - tracking of the marker. The image on the left
is recorded by the Bluefox2 Camera, while the one on the right is obtained from camera 1 of the
VI-Sensor

The goal of the second evaluation is to understand the impact of the error intro-
duced by the toolbox in the pose tracking process. To asses the performances, data
such as the one in figure 5.7 have been collected. Moreover, instead of tracking
directly an UAV, the object that has been utilized in the experiment is the marker
shown in figure 5.8.
The marker has been tracked at the same time both from camera 1 of the VI-Sensor
and from the BlueFox2 Camera, with an average distance cameras-marker of ∼2.5
meter. After the marker has been detected for different servo rotations, the data
could be processed. As for the first evaluation, the reference position θref of the
servo is set at 90 degree in order to evaluate TKalibrWb (θref ).

Figure 5.8: The marker for the tracking

Similarly to the previous evaluation, the idea
is to compare two transformations, TMoos

WM

and TToolboxWM (θ), where M represents the ref-
erence frame of the marker. As it is possi-
ble to see from figure 5.9, the transformation
TMoos
WM linking the marker to the world ref-

erence system (assumed coincident with the
one of the VI-Sensor) can be obtained directly
from the tracking algorithm. Instead, to ob-
tain the transformation TToolboxWM (θ), the re-
sults from the tracking must be concatenated
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with the output of the calibration toolbox:

TToolboxWM (θ) = TToolboxWb (θ) TMoos
bM

where
TToolboxWb (θ) = TKalibrWb (θref ) (TToolboxSb (θref ))−1 TToolboxSb (θ)

Figure 5.9: The transformation concatenation for the second evaluation

The error at each servo position θ is then obtained by

E(θ) = TMoos
WM (TToolboxWM (θ))−1

The meaning of E(θ) is well defined. The basic idea of the evaluation is to obtain
the pose of the marker in the world coordinate system by using two different ap-
proaches and then compare the results.

In the first approach, the transformation TMoos
WM is directly obtained from the track-

ing algorithm without any further processing. Therefore, even if it encodes the
intrinsic error of the tracking pipeline (the pose of the marker is different from the
real one - for more details see [11]), this transformation is assumed to be the ground
truth. Instead, the second transformation TToolboxWM (θ) contains information about
the error of both the tracking and the calibration toolbox.
The two transformations, TMoos

WM and TToolboxWM (θ), should compute the same pose of
the marker. However, due to the errors that acts on each one of them, the results
differ. This situation is shown in figure 5.10. The marker is seen in position A by
the VI-Sensor when the pose is obtained directly, but when TToolboxWM (θ) is utilized,
the marker is seen in position B with a different orientation with respect to A. The
error matrix E(θ) describes the difference in orientation and position between A
and B. As for the first evaluation, the error can be divided into orientation and
position error; in particular, the error is analysed in the absolute value.

Baseline error

To grab a better understanding of the results, an error baseline is introduced. To
compute it, the same idea of concatenated transformations can be exploited, but
using the two fixed cameras of the VI-Sensor.
The process is basically the same. First, the stereo camera is calibrated with Kalibr

in order to obtain TKalibrWC , where W represent camera 1 of the VI-Sensor, while C
indicates the reference system of the second camera.
Then, as depicted in figure 5.11, the same procedure can be applied. The compar-

ison is made between TMoos
WM and T̃WM = TKalibrWC TMoos

CM .
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Figure 5.10: The meaning of the error E(θ): the marker is assumed in position A with a
given orientation when the pose TMoos

WM is used directly, while it is assumed in position B with

a different orientation when TToolbox
WM (θ) is utilized. E(θ) encodes the difference in both rotation

and orientation between A and B

Figure 5.11: The transformation concatenation for the baseline computation

Assuming that the calibration of the VI-Sensor is performed with high precision,
the error matrix Ebaseline encodes the error of the tracking pipeline alone. It can
be decomposed into rotation and translation, giving an idea of the expected perfor-
mances of the toolbox in combination with the tracking algorithm. The results of
the baseline evaluation are shown in table 5.1.
Another possible approach for the error baseline computation could have been the
use of an external tool for pose tracking of the marker, such as Vicon room.

Angle Absolute error [deg]
Roll 1.41
Pan 1.48
Tilt 0.70

Position Absolute error [m]
x 0.030
y 0.024
z 0.011

Table 5.1: Absolute error baseline
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5.3.2 Results

Absolute error in orientation

In figure 5.12 the absolute errors in roll, pan and tilt are represented as a function
of the servo angle of rotation θ. The baseline is represented with a red dotted line,
while the blue line is the mean of all the absolute errors for all datasets; the vertical
lines represent the variance.
The performances of the toolbox are satisfactory. The absolute error does not
exceed the 6 degree in all the components, which have all a similar behaviour. The
pan angle shows a slightly worse results than the roll and the tilt. This trend was
expected, since it is directly affected by the servo movements.
The results for some of the servo rotation angles are reported in Table 5.2.

Figure 5.12: The absolute error in orientation

(a) Absolute error roll

Servo angle θ [deg] Mean [deg] Standard deviation [deg]
75 0.896 1.114
90 2.280 2.332
105 4.888 5.112
117 6.059 5.303

(b) Absolute error pan

Servo angle θ [deg] Mean [deg] Standard deviation [deg]
75 4.107 1.305
90 2.628 2.343
105 3.880 3.454
117 5.433 5.239

(c) Absolute error tilt

Servo angle θ [deg] Mean [deg] Standard deviation [deg]
75 0.605 0.903
90 0.760 1.507
105 3.079 5.232
117 4.173 6.205

Table 5.2: Absolute orientation error
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Absolute error in position

Figure 5.13 shows the absolute errors in position along x, y and z directions. The
error is always close to the baseline and presents satisfactory trends. The highest
value is reached on the z when the servo is in position 93 degree. The error is high
(∼0.5 m on a distance marker-camera of 2.5 m), but it is due to a failure in the
marker pose tracking process. Therefore, this peak should be considered an outlier.
The results for some servo rotation angles are reported in Table 5.3.

Figure 5.13: The absolute error in position

(a) Absolute error x

Servo angle θ [deg] Mean [m] Standard deviation [m]
75 0.033 0.034
90 0.052 0.110
105 0.110 0.231
117 0.187 0.338

(b) Absolute error y

Servo angle θ [deg] Mean [m] Standard deviation [m]
75 0.025 0.046
90 0.039 0.131
105 0.187 0.353
117 0.213 0.334

(c) Absolute error z

Servo angle θ [deg] Mean [m] Standard deviation [m]
75 0.025 0.045
90 0.030 0.052
105 0.183 0.346
117 0.366 0.598

Table 5.3: Absolute position error
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Chapter 6

Conclusion and future work

6.1 Conclusions

In this report a novel toolbox for the calibration of Pan Cameras has been proposed.
Moreover, the model that has been implemented is different from the one that is
usually employed. The centre of rotation can be on an arbitrary axis in the space;
therefore, the model takes into account not only the rotation of the camera, but
also the offset that exists between the camera and the centre of rotation.

The calibration pipeline can be divided into four main steps. Initially, a 3D point
map has to be created using an approach similar to SLAM in order to build the cal-
ibration target. Once the position of the points is known, the system servo-camera
starts rotating. For each rotation step, the camera pose is computed by solving a
2D-3D correspondence problem. When the rotations are completed, the servo po-
sition can be easily retrieved by interpolating the different camera positions, while
the initial orientation is arbitrary. The last step consists of the optimization of
the servo pose, of the angles of rotation of the servo and of the offset between the
camera and the centre of rotation.

Overall, the toolbox shows satisfactory performances, given the presence of many
sources of error. A comparison between the simulation and the calibration per-
formed with the real set-up indicates that many effects that are not take into ac-
count in the model influence the results; for instance, the non-ideal link between
the camera and the servo and the backslash when the system rotates have not been
included in the mathematical formulation of the problem.

Furthermore, even when the toolbox is used in combination with a marker tracking
algorithm, the error it introduces on the marker pose estimation is limited, both
in orientation and position. Therefore, the toolbox can be exploited for practical
application such as UAV tracking, expecting good performances.

6.2 Future work

The toolbox presents a high number of possible expansions.

The most immediate upgrade would be the introduction of another degree of free-
dom, i.e. the tilt movement. The system becomes more complex, since two servo
would be required, as shown in figure 6.1. By introducing anther rotation, the sys-
tem could be used for application such as UAV tracking. In fact, the movements

31
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of the system could cover a much larger field of view with respect to the proposed
solution.

Figure 6.1: The system for pan and tilt rotations

Once the tilt movement is introduced, the last step could be the implementation
of a visual servoing algorithm. With the introduction of a controller, the overall
set-up would be complete and fully functional, ready for the challenges of real world
scenarios.
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Appendix A

AprilTags: an introduction

Since AprilTags represent a fundamental part for the comprehension of this report,
here a brief summary of what they are and how they work is presented. The text
is based on [7].

A.1 Basic principles and ideas

AprilTags are a visual fiducial system that has been employed in a wide range of
tasks, from camera calibration to augmented reality and robotics. For instance,
the tags can be used as artificial fiducial features in order to create controllable
experiments, simplifying the development of systems where the perception is not
the main objective.

Figure A.1: Examples of AprilTags

AprilTags use a 2D bar code style, with the ultimate goal of performing the full 6
degrees of freedom localization of features from a single image (figure A.1). Differ-
ently from QR Codes, a visual fiducial tag has a small information payload and it
can be automatically detected even when the resolution of the image is low or when
it is rotated or tilted. QR Codes do not allow such flexibility, since they require
a perfect alignment between the camera and the code. Plus, since the amount of
information they contain is enormous with respect to AprilTags, the resolution of
the picture should be fairly high.

A.2 The working principle

In order to detect the AprilTags, the system must be composed by two elements:
the tag detector and the coding system.
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The detector attempts to find four-sided regions that have a darker interior than the
exterior. In order to facilitate this process, the tags have black and white borders.
The first step is the detection of the quad lines from an image. Once they are
found, the homography can be computed with the Direct Linear Transform (DLT)
algorithm [16].
The final task of the detector is to read the bits from the payload field. This can be
achieved by computing the tag relative coordinates of each bit field, transforming
them into image coordinates using the homography, and finally thresholding the
pixels.

Once the data payload is decoded from a quad, the coding system determines
whether it is valid or not. The ultimate goals of the coding system is to maxi-
mize the number of tags that can be distinguished and to minimize the number of
false detections.

This appendix has described briefly the working principle of AprilTags. Overall,
they represent a fiducial system that has numerous advantages, such as reliability.
Therefore, they are a robust method for localization and this characteristic make
them fundamental for the robotics field.
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